Testing Independence of Error Terms:
The Durbin-Watson Statistic (Text Section 12.3)

One assumption of our linear regression model is that the error terms are independent. A common violation of this assumption occurs when each error term is related to its immediate predecessor (ε_i is related to ε_{i-1}). This is mostly likely to occur when the data points were observed in some sort of meaningful time sequence (weekly sales data, for example). This type of relationship is called *first order autocorrelation*. The parameter ρ is used to represent first order autocorrelation, where $-1 \leq \rho \leq +1$. If error terms exhibit first order autocorrelation then they follow the relation:

$$
\varepsilon_t = \rho \varepsilon_{t-1} + \mu_t
$$

where the μ_t values are assumed to be independent $\text{N}(0, \sigma^2)$.

The *Durbin-Watson* statistic is typically used to test: $H_0: \rho = 0$ vs. $H_1: \rho > 0$ since when error terms are correlated in business and economic applications, the correlation tends to be positive (Reference: Neter, Kutner, Nachtsheim, and Wasserman, *Applied Linear Statistical Models*, 4th Edition, pg. 497). It does this by measuring the correlation between error terms and their immediate predecessors:

$$
D = \frac{\sum (e_t - e_{t-1})^2}{\sum e_t^2}
$$

The statistic D ranges in value from zero to four. When the error terms are independent we expect D to be close to 2. “Small” values of D suggest that error terms tend to cluster (positive autocorrelation); “large” values of D suggest that error terms tend to alternate (+, -, +, -) (negative autocorrelation). Critical values for the one-sided test for positive autocorrelation can be found in Table B.7 on page 1349 (it’s based on n, the sample size, and p, the number of independent variables in the model).

The decision rule is a little different: If $D < d_L$ you’d reject H_0 and conclude that the error terms exhibit positive autocorrelation; if $D > d_U$ you’d fail to reject H_0 and conclude that the error terms do not have positive autocorrelation, and if $d_L \leq D \leq d_U$ the test is inconclusive.

Minitab can calculate this statistic automatically. It’s under ‘Options’ in the regression setup window.

You can also test for negative autocorrelation by using $4 - D$ instead of D for your test statistic.
Example 1:

Sales_A = 50.6 + 2.51 Week

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>50.621</td>
<td>2.995</td>
<td>16.90</td>
<td>0.000</td>
</tr>
<tr>
<td>Week</td>
<td>2.5142</td>
<td>0.1687</td>
<td>14.90</td>
<td>0.000</td>
</tr>
</tbody>
</table>

S = 7.998 R-Sq = 88.8% R-Sq(adj) = 88.4%

Durbin-Watson statistic = 1.95
Example 2:

The regression equation is
Sales_B = 50.7 + 3.56 Week

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>50.728</td>
<td>5.685</td>
<td>8.92</td>
<td>0.000</td>
</tr>
<tr>
<td>Week</td>
<td>3.5565</td>
<td>0.3202</td>
<td>11.11</td>
<td>0.000</td>
</tr>
</tbody>
</table>

S = 15.18 R-Sq = 81.5% R-Sq(adj) = 80.8%

Durbin-Watson statistic = 0.60