The Damped Compound Pendulum
A Second Order System

Course Objective

Simulation using “Working Model”
Exponentially Decaying Sinusoid defined by ω_n and ζ

\[
\ddot{\theta} + 2\zeta \omega_n \dot{\theta} + \omega_n^2 \theta = 0 \quad (1)
\]

\[
\ln \frac{a}{b} = \frac{\zeta 2\pi}{\sqrt{1 - \zeta^2}} = \frac{1}{N} \ln \frac{X_1}{X_{N+1}} \quad (2A)
\]

\[
\frac{2\pi}{T} = \omega_n \sqrt{1 - \zeta^2} \quad (2B)
\]

ω_n Natural Frequency [rad/s]
ζ Damping ratio
T Period [sec]
θ Angle [rad]
Damped Compound Pendulum Equations of Motion

\[\ddot{\theta} + \frac{c}{J} \dot{\theta} + \frac{m_L g d}{J} \theta = 0 \] \hspace{1cm} (3)

Linearized 2nd order differential equation assumes **small** angles

- **L** Bar length [m]
- **d** Pivot to CG distance [m]
- **m\textsubscript{L}** Mass of pendulum [kg]
- **J** \textsuperscript{Moment of Inertia [kg \cdot m2]}
- **C** \textsuperscript{Viscous damping coefficient \left[\frac{N\text{ms}}{\text{rad}}\right]}
System Identification by Matching Coefficients

Compare (1) and (3)

\[
\ddot{\theta} + 2\zeta \omega_n \dot{\theta} + \omega_n^2 \theta = 0
\]

\[
\ddot{\theta} + \frac{c}{J} \theta + \frac{m_L g d}{J} \theta = 0
\]

Yields:

\[
\omega_n = \sqrt{\frac{m_L g d}{J}} \tag{4A}
\]

\[
c = 2\zeta \omega_n J \tag{4B}
\]

Now can create a model for simulation
Incremental optical encoders generate two data signals that are electrically 90° out of phase with each other. The term *quadrature* refers to this 90° phase relationship.

<table>
<thead>
<tr>
<th>CCW A-B</th>
<th>CW A-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>1-0</td>
<td>1-1</td>
</tr>
<tr>
<td>0-0</td>
<td>1-0</td>
</tr>
<tr>
<td>0-1</td>
<td>0-0</td>
</tr>
<tr>
<td>1-1</td>
<td>0-1</td>
</tr>
</tbody>
</table>