Cataloging and Classification in Modern Libraries:
An Annotated Bibliography

Philip Holderith
INFO 522: Information Access and Resources
June 6, 2010
Introduction and Scope

The following bibliography represents the issues of cataloging and classification in a library environment. The articles span from debates on necessary metadata in a catalog, to criticisms of indexing and controlled vocabulary, to analyses of subject headings and users’ concepts of what may constitute subject headings, to studies of the benefits of hierarchy in a system of classification. Many of the articles are concerned with the development of the computer interfaces of recent catalogs, while others are more concerned with word choice and the integration of thesaurus-like properties into the catalog’s language capabilities. One particular article proposes using “clusters” of information to show all relevant ideas and their possible connections to resources. A wide range of years is intended to show a gradual development of different attitudes and innovations in the field. The articles were published from 1989 to 2009, in different parts of the world.

Description

The problem of information retrieval has long been approached through the attempted solutions of cataloging and classification in libraries. Research involves finding information about a topic while the topic is unclear to the mind of the researcher, and so the researcher must find a way to communicate his very ignorance to a catalog, in the form of keywords and subject terms (Larson, 147). In order to extend the use of libraries to an audience less “erudite” than the scholars and indexers, efforts have been made to create a more user-friendly design for catalogs. This requires a combination of extensive planning, advanced technology, mathematical formulas, and (to some catalogers’ chagrin) lucky guesswork. It is not in anyone’s interest for library
catalogs to be esoteric. Though courses and exercises are available to explain the properties of a catalog, librarians agree that their job is to help researchers find information on topics of interest.

Summary of Findings

The arrangement of information for researchers’ convenience is a topic of much controversy and knows no single solution. The primary question that every selected article presupposes, approaches, negotiates on, ponders, or dismisses as unanswerable, is how well the resources of a library can possibly be organized without the information of the catalog becoming excessive and therefore impossible to use. Whatever today’s technology, whatever our contemporary jargons and modes of communication, the process of classifying library materials for the public is a matter of estimating what people look for and how they look for it. Safley (2008) reminds librarians that their catalogs compete against the search engines of the internet, and suggests that the interface of a library catalog must be similar to, if not a mimic of, the search engines that library patrons are accustomed to using. This suggestion reflects a belief that the purpose of the library is to serve the public, and that it should mould its design around the average person’s expectations and habits.

Several articles focus on metadata in catalogs. The choice of how to represent the different aspects of the form of any item may not be as important as subject classification, but it is still a topic of some disagreement. At Harvard University, the use of form and genre searches in the Widener Library has made searches more specific and productive (Beall, 2000). The Tsinghua University Library in China has a digital library, and its catalog that can search for a document or item using five different criteria: a description of the document, its original source,
the process of digitizing it, the technical properties of the digital file, and the rights of its access control (Niu, 2002).

Still, recently, some schemes for categorizing metadata have caused confusion for library patrons. Hider (2009, Entry 8) has allowed catalog users to “free-list” different terms according to their forms, and the users’ responses had little in common with many indexers’ preconceived ideas of an item’s material designation. Also, Hider (2009, Entry 9) questions whether “content” and “carrier” can really be kept separate in the majority of catalog descriptions. Rather, combinations of different content and carrier values may create more diverse and more precise descriptions of items. But that is only one possible solution. Other criteria for non-subject metadata have been suggested.

More multifarious is the debate on subject searching in a library. Library patrons unacquainted with the Library of Congress Classification do not naturally conceive of subjects in that way, and so catalog searches are designed to make sense of common jargon. However, this may be a stretch between two different things which fails to achieve either. Lancaster, Connell, Bishop, and McCowan (1991) criticize the online catalog at University of Illinois, claiming that a subject search using this catalog could not retrieve results that an expert in any given field would recommend. Other writers are more hopeful for the future of subject searches, picturing new or altered methods. Budd (1996) believes that in order to make relevant documents more easily available through subject searches, indexers must start at the classification of the documents themselves and recognize the multiple topics each book or item may involve. Frank and Paynter (2004) propose reorganizing books on shelves so that the interrelationships between the books will be clearer. In the Library of Congress Classification, they offer a complicated technique of synthesizing the LCC call number for a book according to the book’s LCSH subject headings.
Not all classification research supports keeping a strict hold on the subject headings that past library scientists have established. Observation of the social tags that consumers use on book-related websites shows some of the new directions in which literary criticism may be heading (Lawson, 2009). Perhaps subject headings should be redeveloped to reflect the new ideas present in these social tags.

This concept is akin to a thesaurus, which many library researchers want to integrate into catalogs, so that users can operate with language that is more natural to them, while at the same time the catalog shows users the corresponding subject headings under which books are classified. At Genentech Library and Information Services, catalogers have developed thesauri to help navigate through the medical terms of their book collections (Bellamy and Bickham, 1989). Larson (1991) has studied a sort of network containing “clusters,” collections of carefully calculated related terms that retrieve documents whose relevance to the terms has been statistically tested and mathematically quantified. These “clusters,” while tedious to design, provide precise access for catalog users during a subject search. Buchel and Coleman (2003) are also interested in using the concepts of a thesaurus in order to show the links between subjects, because while no classification system is natural to the human mind, a thesaurus relies on basic logic, which people can understand without extensive training.

A few of the articles demonstrate less confidence in subject headings. At North Carolina State University, librarians have purchased a new catalog system that offers high-quality keyword searches (Antelman, Lynema, and Pace, 2006). Miksa (2007) writes of an extensive review in which many classification systems are questioned and criticized. Another university has used a “recommender” system, which can recommend resources to a catalog user, based on the item in which the user has already shown interest (Geyer-Shulz, Neumann, and Thede, 2003).
If the computer can make adequate recommendations, then the number of searches the user must specify is reduced.

The study of cataloging and classification is not a new interest. Nevertheless, as computer technologies have advanced, users’ expectations of information access have increased, and catalogs are capable of holding more information than ever. The ability to inform and guide and organize has never been more potent or farther-reaching. The librarian uses these advancements to make information even more accessible to library patrons. As long as catalog and classification systems have flaws, it will be a librarian’s responsibility to seek improvement. The articles that follow are all suggestions for improving those systems.

Bibliography

Entry 1:

Abstract: Library catalogs have represented stagnant technology for close to twenty years. Moving toward a next-generation catalog, North Carolina State University (NCSU) Libraries purchased Endeca’s Information Access Platform to give its users relevance-ranked keyword search results and to leverage the rich metadata trapped in the MARC record to enhance collection browsing. This paper discusses the new functionality that has been enabled, the implementation process and system architecture, assessment of the new catalog’s performance, and future directions.

Annotation: Librarians compare the strengths and weaknesses of the subject "authority" search function of one catalog system, and the keyword search function of another catalog system. A small group of students performed searches, each student using one of the two catalogs, and search results were compared. Keyword searching seems to be more efficient for students’ needs. But the librarians are planning to integrate the two systems. It is not clear how this can be done. Still, the distinction made between the two types of searches demonstrates why some librarians might prefer to teach only keyword searching to undergraduate students.

Search Strategy: I decided to use Library Literature and Information Science Full Text, since it is one of the databases included in the Infosci OneSearch Group
in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: Library Literature and Information Science Full Text [Dialog]

Method of Searching: Controlled Vocabulary

Search String:

```
ss academic()librar? OR college()librar? OR university()librar?
AND
(classif? OR categor? OR catalog? OR index?)/de, ab
AND
(information()system? OR information()architecture?)/de, ab
```

Entry 2:

Abstract: Catalogers at Harvard University have been adding form and genre data to MARC records in HOLLIS, the University's online library catalog, since 1994. The addition of this data in bibliographic records allows library users to more easily access some materials described in the catalog. This paper describes how form and genre data is indexed in the catalog and analyzes the value of adding, indexing, and using this bibliographic data.

Annotation: A major change, namely that of indexing form and genre terms, has had a great impact on the OPAC at Harvard University. The author is the Senior Cataloguer of the Widener Library of the University, and he reflects on several student searches he has observed, as well as on some of the sources for form and genre indexing terms. Beall believes that the use of both form and genre indexing in OPAC searching can make searches more specific and precise. Beall predicts that this method of indexing will impact OPACs significantly, which indeed has proven correct.

Search Strategy: I used Library Literature & Information Science Full Text because it seemed to be the database designed most specifically for library-related research. This was an initial search, so I used keywords.

Database: Library Literature & Information Science Full Text

Method of Searching: Keyword Searching

Search String:

```
classification OR taxonomy OR catalog OR categorization OR system of hierarchy OR information systems
AND
```
Entry 3:

Abstract: The biomedical book collection in the Genentech Library and Information Services was first inventoried and cataloged in 1983 when it totaled about 2,000 titles. Cataloging records were retrieved from the Online Computer Library Center (OCLC) system and used as a basis for cataloging. A year of cataloging produced a list of 1,900 subject terms. More than one term describing the same concept often appeared on the list, and no hierarchical structure related the terms to one another. As the collection grew, the subject catalog became increasingly inconsistent. To bring consistency to subject cataloging, a thesaurus of biomedical terms was constructed using the list of subject headings as a basis. This thesaurus follows the broad categories of the National Library of Medicine's Medical Subject Headings and, with some exceptions, the Guidelines for the Establishment and Development of Monolingual Thesauri. It has enabled the cataloger in providing greater in-depth subject analysis of materials added to the collection and in consistently assigning subject headings to cataloging records.

Annotation: Catalogers at Genentech have used different standards of cataloging in their systems, including some improvisations, due to a lack of subject headings available for the scientific matters of their interest. The lack of regularity among the MeSH and LCSH betrayed that LCSH lacked, at the time, the specific "genus-species" explanation for the relationships among individual terms. The resulting problem led to the development of a thesaurus for medical terms, though much of this was adapted from LCSH and MeSH. A good step-by-step look at how the properties of a thesaurus were recognized and gradually implemented as a valuable tool in library cataloging.

Search Strategy: I compared some of the better articles I had found so far through Dialog and formed a new search statement using the more prominent descriptors.

Database: Infosci [Dialog]

Method of Searching: Keyword Searching

Search Strategy: *ss classification? AND catalog? AND automation? AND information()retrieval? AND probabilit?*

Abstract: There is increasing evidence that libraries, traditional and digital, must support learning, especially the acquisition and enhancement of scientific reasoning skills. This paper discusses how classificatory structures, such as a faceted thesaurus, can be enhanced for novice science learning. Physical geography is used as the domain discipline, and the Alexandria Digital Earth Prototype project provides the test bed for instructional materials and user analyses. The use of concept maps and topic maps for developing digital learning spaces is briefly discussed.

Annotation: Research in geography serves as an example to show some of the flaws in library cataloging systems. The use of topics and roles in order to show keyword relationship is an idea more prevalent, Buchel and Coleman point out, in a thesaurus. Concept maps are recommended as a means of displaying various types of relationships among terms. It contains a clarifying explanation of the differences between “concept,” “term,” “subject,” “topic,” and “facet” (7).

Search Strategy: I decided to use INSPEC, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: INSPEC [Dialog]

Method of Searching: Controlled Vocabulary

Search String:

```
ss academic()librar? OR college()librar? OR university()librar?
AND
(classif? OR categor? OR catalog? OR index?)/de, ab
AND
(information()system? OR information()architecture?)/de, ab
```

Entry 5:

Abstract: A major concern in library and information science relates to information access. This concern is reflected in the literature in papers too numerous to mention here. Access is generally treated in one of two ways in the discipline's formal discourse: as an abstract concept envisioned either as a property of information or, more frequently, as a conjunctional notion, suggesting that information depends on access for full realization of its cognitive potential; or as a practical concept, usually inseparable from aspects of use, including the expectations and
behaviors of users. It is the second idea of access that is of interest here. Specifically, this article examines the demands on both users and information systems in the act of responding to a specific information query.

Annotation: The varying problems of subject access are mostly related to the concept of "relevance," and its lack of objectivity. Budd encourages catalogers to focus as much as possible on content. Sometimes a certain topic is more than what it seems – more specific, a combination of more than one topic, or involving more aspects than any one author has previously combined in a single document. In order to overcome these complexities, Budd suggests treating a book as a potential intersection of many different topics – that is, conceiving of a book as something that can have more than one call number, which is an innovative approach no other article in this study mentioned.

Search Strategy: I decided to use Education Abstracts, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: Education Abstracts [Dialog]

Method of Searching: Controlled Vocabulary

Search String: ss academic()librar? OR college()librar? OR university()librar?
AND
(classif? OR categor? OR catalog? OR index?)/de, ab
AND
(information()system? OR information()architecture?)/de, ab

Entry 6:

Abstract: This paper addresses the problem of automatically assigning a Library of Congress Classification (LCC) to a work given its set of Library of Congress Subject Headings (LCSH). LCCs are organized in a tree: The root node of this hierarchy comprises all possible topics, and leaf nodes correspond to the most specialized topic areas defined. We describe a procedure that, given a resource identified by its LCSH, automatically places that resource in the LCC hierarchy. The procedure uses machine learning techniques and training data from a large library catalog to learn a model that maps from sets of LCSH to classifications from the LCC tree. We present
empirical results for our technique showing its accuracy on an independent collection of 50,000 LCSH/LCC pairs.

Annotation: Frank and Paynter propose to show a reliable link between LCSH subject headings and LCC hierarchy. A very technical article, it shows how the different LCSH topics of a single item can lead down the LCC stems to a location suitable for topic recognition. This process involves theories, algorithms, and formulas from different sources. As with most classification schemes this concept is imperfect, due to the multiple directions in the LCC hierarchy that the classifiers can take, even with the LCSH headings as indicators. Ambiguity is the biggest problem with this technique, and the authors admit it.

Search Strategy: Miksa’s “The Challenges of Change” brought up a lot of issues, so I decided to look up one of the works cited. In Miksa’s article this was reference #115.

Database: N/A

Method of Searching: Footnote Chasing

Entry 7:

Abstract: Library systems are a very promising application area for behavior-based recommender services. By utilizing lending and searching log files from online public access catalogs through data mining, customer-oriented service portals in the style of Amazon.com could easily be developed. Reductions in the search and evaluation costs of documents for readers, as well as an improvement in customer support and collection management for the librarians, are some of the possible benefits. In this article, an architecture for distributed recommender services based on a stochastic purchase incidence model is presented. Experiences with a recommender service that has been operational within the scientific library system of the Universität Karlsruhe since June 2002 are described.

Annotation: Geyer-Schulz, Neumann, and Thede examine the functions of a recommender service and try to determine how useful it is in a library OPAC. They analyze the average number of recommendations the service can offer and observe the number of times users access the links provided on the recommendations list. The resulting helpfulness of recommender
services is doubtful, but the technology used to generate recommendations is still a careful and elaborate system that may help some users. It is also relatively inexpensive.

Search Strategy: I decided to use INSPEC, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: INSPEC [Dialog]

Method of Searching: Controlled Vocabulary

Search String:

\[
\text{ss academic()librar? OR college()librar? OR university()librar?} \\
\text{AND} \\
\text{(classif? OR categor? OR catalog? OR index?)}/de, ab \\
\text{AND} \\
\text{(information()system? OR information()architecture?)}/de, ab
\]

Entry 8:

Abstract: The projected Resource Description and Access (RDA) standard, set to replace the Anglo-American Cataloguing Rules, aims to facilitate a more user-centred[sic] library catalogue display by breaking down the current General Material Designations (GMDs) and Specific Material Designations (SMDs) into two semantically distinct facets, one representing a resource’s carrier, the other its content. As well as offering search limiting by these two facets, RDA-based catalogues could sort by either facet, and group results by the carrier and content categories for users to explore. However, although the theory behind the carrier and content typologies may be convincing, the sets of terms proposed to represent the various categories of carrier and content were not constructed through analysis of end-user classifications, nor have they been tested on end-users. One way of investigating how users categorise[sic] things, commonly employed by information architects, is the free-listing technique, in which participants are asked to list all the items in a particular domain. This technique was applied in a simple online survey that aimed to examine the nature and scope of carrier and content categorisation[sic] by visitors to a university library catalogue. The results indicate that user typologies may extend a lot further than the RDA categories, involving several other major facets, such as purpose, audience and extent. In common usage, the concepts of content and carrier, along with other facets, are very often combined, and an optimal catalogue search interface should do likewise.
Annotation: Hider criticizes GMDs for their limitations, and SMDs as insufficient data. However, the issue of how to classify content and carrier data of library materials continues to inspire new, different, and conflicting solutions, due to the fine line (perhaps no definite line at all) between content and carrier. In an online questionnaire in 2008, user responses indicated very little interest in the carrier/content "divide" that the RDA so emphasizes in their approach to cataloging. He advocates using a wider range of metadata categories, including "audience" and "purpose," for describing current media in a catalog. These suggestions seem impractical and based on user results rather than any logical concept, but perhaps his point is to criticize current metadata for being “too logical.”

Search Strategy: I found Hider’s article “Library Resource Categories and their Possible Groupings” very relevant to some of the issues that interest me (material designation, user expectations of a catalog, the fine line between what users should be able to figure out for themselves and what we should do for them), and so I searched for other articles for him.

Database: Library Literature and Information Science Full Text

Method of Searching: Author Search

Search Strategy: Hider, P. [under “author”]

Entry 9:

Abstract: The resource typologies proposed in the new standard, Resource Description and Access (RDA), are evaluated in the context of a particular university library catalogue through two card-sort exercises. Although it was found that end-users recognised[sic] the content and carrier aspects of the resource types as listed in RDA, they did not categorise[sic] them as RDA has done. Instead, content and carrier aspects were used to construct more complex classifications, which were also heavily influenced by other aspects, such as seriality. There was also much variation in these classifications, particularly at lower levels, suggesting that polyhierarchical systems may be advantageous.

Annotation: Hider observes some of the concepts of categorization that students have, and he tries to determine whether their concepts parallel or at least resemble the new taxonomic categories being developed. Hider exposed random LIS students to exercises that involved the sorting of different terms that described library resources. He expected them to sort them into content and carrier terms, but few did. He concludes that the resource descriptions can fit together in no single perfect way, although the exercise has given him some ideas for possible facets and subfacets in a library catalog.
Search Strategy: I decided to use ERIC, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: ERIC [Dialog]

Method of Searching: Controlled Vocabulary

Search String: ss academic()librar? OR college()librar? OR university()librar? AND (classif? OR categor? OR catalog? OR index?)/de, ab AND (information()system? OR information()architecture?)/de, ab

Entry 10:

Abstract: Fifty-one subject searches were performed in an online catalog containing about 4.5 million records. Their success was judged in terms of lists of items, known to be relevant to the various topics, compiled by subject specialists (faculty members or authors of articles in specialized encyclopedias). Many of the items known to be relevant were not retrieved, even in very broad searches that sometimes retrieved several hundred records, and very little could be done to make them retrievable within the constraints of present cataloging practice. Librarians should recognize that library catalogs, as now implemented, offer only the most primitive of subject access and should seek to develop different types of subject access tools.

Annotation: A discussion of various methods of improving computer catalogs, as well as methods of judging how well the subject searching in a computer catalog appears to work. In order to test a library computer catalog, Lancaster used the advice of experts in several academic fields to determine the "best" resources (specific books or other documents) for certain subjects, and then searched in the University of Illinois online catalog for these subjects to see how many of the recommended "best" resources were found using a subject search. The substandard results show a (presumably) unavoidable flaw in bibliographic databases, the impracticality of having either too many or too few subject headings for any one book or resource. Lancaster et al. are not optimistic about the future of the computer catalog.

Search Strategy: I compared some of the better articles I had found so far through Dialog and formed a new search statement using the more prominent descriptors.
Database: Infosci [Dialog]

Method of Searching: Keyword Searching

Entry 11:

Abstract: Research into online catalog use and users has found some pervasive problems with subject searching in these systems. Subject searches too often fail to retrieve anything, and those that do succeed often retrieve "too much" material. This article examines these problems and how they might be remedied. The theoretical principles for the design of effective information retrieval systems are discussed, and an experimental online catalog system based on these principles is described. The system, CHESHIRE, uses a method called "classification clustering," combined with probabilistic retrieval techniques, to provide natural language searching (which helps to reduce search failure) and to provide effective control of "information overload" in subject searching.

Annotation: The complexity of the LCSH system has confused many catalog users in libraries, since subject headings used are not terms that people use in ordinary life outside of the library. All searching in the current LCSH- and keyword-oriented catalogs, Larson says, is a series of arranged chances, indexers hoping to communicate with searchers through a limited vocabulary. Larson does not want to stress the "training" of all patrons to use the catalog effectively; rather, he suggests using a thesaurus-like cataloging system whose fundamental ideas he shows us in his prototype, called CHESHIRE. This system consists of "classification clusters," a group of characteristics that have been proven to lead to documents that users find relevant. Larson is confident that this type of system is an improvement over those with more limited searches and simpler indexes.

Search Strategy: I decided to use ERIC, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: ERIC [Dialog]

Method of Searching: Controlled Vocabulary
Search String:

ss academic()librar? OR college()librar? OR university()librar?
AND
(classif? OR categor? OR catalog? OR index?)/de, ab
AND
(information()system? OR information()architecture?)/de, ab

Entry 12:

Abstract: Social tagging enables librarians to partner with users to provide enhanced subject access. This paper quantifies and compares LC subject headings from each of 31 different subject divisions with user tags from Amazon.com and LibraryThing assigned to the same titles. The intersection and integration of these schemas is described and evaluated.

Annotation: After reading some extensive research on social tagging on Amazon.com and LibraryThing, Lawson compares the results to the Subject Headings in LCSH and notes some similarities, as well as many differences. The subject headings of internet users are not all eligible to be used in updating the accepted subject headings of our libraries, but knowing some of more common social tags can help librarians to understand how patrons conceive of the subjects they are interested in. This knowledge may help in developing bibliographic records of books, as well as lists of synonyms that link to established subject headings in library catalogs. The practice of social tagging can also give users some basic practice with the concept of subject headings, even if in a crude, unregulated form.

Search Strategy: I decided to use ERIC, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: ERIC [Dialog]

Method of Searching: Controlled Vocabulary

Search String:

ss academic()librar? OR college()librar? OR university()librar?
AND
(classif? OR categor? OR catalog? OR index?)/de, ab
AND
(information()system? OR information()architecture?)/de, ab
Entry 13:

Abstract: This paper reviews the enormous changes in cataloging and classification reflected in the literature of 2003 and 2004, and discusses major themes and issues. Traditional cataloging and classification tools have been revamped and new resources have emerged. Most notable themes are: the continuing influence of the Functional Requirements for Bibliographic Control (FRBR); the struggle to understand the ever-broadening concept of an "information entity"; steady developments in metadata-encoding standards; and the globalization of information systems, including multilingual challenges.

Annotation: A proposition for the revision, increased flexibility, and standardization of information entities in bibliographic catalogs, based on observations made in the earlier part of the decade. Different documents on classifying were consulted by various cataloging authorities, in order to determine what sorts of information bibliographic catalogs must be able to accept. Miksa discusses the possibility of combining general classification and information retrieval systems, with specific indexes and classification schemes in various cultures. A decision on the matter will be very difficult to come by, if possible at all, due to criticisms of both MARC and XML and their adaptabilities.

Search Strategy: I decided to use Social SciSearch, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: Social SciSearch [Dialog]

Method of Searching: Controlled Vocabulary

Search String: ss academic()librar? OR college()librar? OR university()librar? AND (classif? OR categor? OR catalog? OR index?)/de, ab AND (information()system? OR information()architecture?)/de, ab

Entry 14:

Abstract: This article provides an overview of work completed at Tsinghua University Library in which a metadata framework was developed to aid in the preservation of digital resources. The metadata framework is used for the creation of metadata to describe resources, and includes an encoding standard used to store metadata and resource structures in information systems. The author points out that the Tsinghua University Library metadata framework provides a successful digital preservation solution that may be an appropriate solution for other organizations as well.

Annotation: The Tsinghua University Library catalog system uses five sets of metadata to capture different information on all library resources, including paper documents. The framework of metadata can describe the structure of a resource, as well as the history of how a resource was transformed from one format into another, tasks not all metadata formats can do. The resulting system of metadata is therefore more thorough and flexible than other, earlier such systems. How some of these metadata categories are at all relevant or useful, Liu did not make clear.

Search Strategy: I decided to use INSPEC, since it is one of the databases included in the Infosci OneSearch Group in Dialog, and because it came up with a lot of results when I tried my search strategy with Infosci. I used a controlled vocabulary search.

Database: INSPEC [Dialog]

Method of Searching: Controlled Vocabulary

Search String: ss academic()librar? OR college()librar? OR university()librar?
AND
(classif? OR categor? OR catalog? OR index?)/de, ab
AND
(information()system? OR information()architecture?)/de, ab

Entry 15:

Abstract: Over the past two years, the Catalog Committee at the University of Texas at Dallas used a verbal protocol analysis to research how students use the catalog system to find known items, to locate materials on a subject, and to evaluate the design and appearance of the interface. The research is attempting to evaluate the thought process and effectiveness of how students use the catalog system. The Library is conducting its third session to evaluate the changes made in the discovery process. During these sessions, the Library will incorporate a means to collect both the audio portion of the person's oral thought processes and a capture of the links tried in
answering a question. The testing covers a range of levels of undergraduate students many who have received basic library instruction.

Annotation: An evaluation of undergraduates’ ability to navigate through the interface of an online public access catalog, comparing test results before and after minor alterations to the wording of the interface. The Catalog Committee of the University of Texas at Dallas conducted a series of tests, each test involving 14 random undergraduates from the university, over a period of two years. The librarians on the committee believe that poor test results demonstrate an overly technical jargon in the interface of the catalog, and that a more colloquial interface is needed if the students are to use the catalog without needing a librarian’s assistance. This study displays catalog usage against the backdrop of internet search engines, reminding librarians of what users expect of any search mechanism in the Internet Age.

Search Strategy: I used Library Literature & Information Science Full Text because it seemed to be the database designed most specifically for library-related research. This was an initial search, so I used keywords.

Database: Library Literature & Information Science Full Text

Method of Searching: Keyword Searching

Search String:
- classification OR taxonomy OR catalog OR categorization OR system of hierarchy OR information systems
- AND
- academic libraries OR university libraries OR college libraries

Conclusion and Personal Statement

This research was, admittedly, a source of depression rather than enthusiasm for its author. The numerous problems, arguments, observations of failure, and paradoxes that now seem the inheritance for all new librarians, were the chief issues that interested the authors concerned in this bibliography. At the end of *Oedipus Tyrannus*, the chorus remarks, “Let no man be counted lucky until he is dead.” Life is a series of problems, and no solution is so adequate that every problem to come is solved. The struggle to provide knowledge to those who
wish to research a topic never ends, because every person is unique. Or ignorant in his or her own way.

Searching for these documents was more difficult than expected. The practice of “classification” is not really an issue. Today the Dewey Decimal Classification and Library of Congress Classification are not debated, the systems are simply followed as they have been established. The articles relevant to the topic of classification, therefore, were primarily about how to construct a catalog that made the system of classification comprehensible to the catalog user. This is what librarians strive to do. It is the challenge, and the subject of a series of important decisions that we must make. It was difficult to determine which articles would teach me something innovative about library practice and which articles would simply describe examples of cataloging without making any specific point.

Making this distinction is, perhaps, what a great librarian must be able to do. He or she must look for focus and purpose in articles while helping a library patron search. Researching requires one to analyze compositions for relevance. No amount of refining one’s search or using correct controlled vocabulary will make every search result absolutely relevant to a specific topic. Where the imperfection of the library catalog remains, the power of human intellect must step in.