useful information:

\[\tau = r \perp F \]
\[\tau = I \alpha \]
\[\tau = \Delta L / \Delta t \]
\[L = I \omega = r \perp p \]

\[I = \sum m_i r_i^2 \]
\[I = \frac{1}{12} ML^2 \]
rod about end
\[I = \frac{1}{12} ML^2 \]
rod about center
\[RKE = \frac{1}{2} I \omega^2 \]
\[\alpha = \Delta \omega / \Delta t \]
\[\omega = \Delta \theta / \Delta t \]
\[s = r \theta \]
\[v = r \omega \]
\[a = r \alpha \]

\[\theta = \omega_0 t + \frac{1}{2} \alpha t^2 \]
\[\omega^2 = \omega_0^2 + 2 \alpha \theta \]

\[\sum \tau = 0 \; ; \; \sum F = 0 \]

\[g = 9.8 \, \text{m/s}^2 \]

1 kg weighs 2.2 lb

1 mph = 0.447 m/s

area of a sphere = \(4\pi r^2\)

area of a circle = \(\pi r^2\)

area of a square = \(L^2\)

\[1 \text{ kg weighs } 2.2 \text{ lb} \]

\[1 \text{ mph } = 0.447 \text{ m/s} \]

area of a sphere = \(4\pi r^2\)

area of a circle = \(\pi r^2\)

area of a square = \(L^2\)