RETROFIT OF HISTORIC WAREHOUSE TO NEW MEDICAL CLINIC IN TULSA, OK

STRUCTURAL

TEAM 2010-5

JACQUELINE BAYER
JEFFREY DOWGALA
LIAM HENDRICKEN
LAUREN MCNALLY

APRIL 9, 2010
INTRODUCTION

ASCE CHARLES PANKOW FOUNDATION ANNUAL
ARCHITECTURAL ENGINEERING STUDENT COMPETITION

(Circa 1927)
PROPOSED NEW DESIGN
INTRODUCTION

ASCE Charles Pankow Foundation Annual
Architectural Engineering Student Competition

- GOALS
 - INNOVATION
 - SUSTAINABILITY

- DESIGN FOCUS
 - EXISTING STRUCTURE
 - MEDICAL CLINIC NEEDS
 - TORNADO SHELTER
 - TRIAGE CENTER
PROJECT REQUIREMENTS

- DISCIPLINARY COORDINATION
 - ARCHITECTURAL
 - CIVIL
 - STRUCTURAL
 - MECHANICAL

- HISTORIC PRESERVATION

- DEVELOP SAFE DESIGN
 - DERIVED FROM CODES AND GUIDELINES
 - TORNADO SHELTER
 - TRIAGE CENTER
Codes & Standards

- Multi-Disciplinary
 - IBC, 2006
 - IEBC, 2006
- Wind and Earthquake Loads
 - ASCE 7-05
- Concrete Code
 - ACI 318-08
- Tornado Shelter Requirements
 - FEMA 361
- Sustainability
 - LEED V3 2009
Project Management: Design Process

<table>
<thead>
<tr>
<th>Activity</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design</td>
<td>44</td>
</tr>
<tr>
<td>Site Design</td>
<td>42</td>
</tr>
<tr>
<td>Structural Design</td>
<td>24</td>
</tr>
<tr>
<td>HVAC Design</td>
<td>43</td>
</tr>
<tr>
<td>Tornado Shelter Design</td>
<td>24</td>
</tr>
<tr>
<td>Building Integration</td>
<td>65</td>
</tr>
<tr>
<td>Budget</td>
<td>96</td>
</tr>
<tr>
<td>Sustainability</td>
<td>96</td>
</tr>
<tr>
<td>Write AEI Report</td>
<td>34</td>
</tr>
<tr>
<td>Review Drawings and Report</td>
<td>33</td>
</tr>
<tr>
<td>Submit AEI Draft to Professor Mitchell for Review</td>
<td>3</td>
</tr>
<tr>
<td>Submit Diesel Draft to Professor Mitchell for Review</td>
<td>1</td>
</tr>
<tr>
<td>Make Changes to AEI Report</td>
<td>4</td>
</tr>
<tr>
<td>Final Report Due to AEI</td>
<td>1</td>
</tr>
<tr>
<td>Make Changes to Diesel Report</td>
<td>2</td>
</tr>
<tr>
<td>Create Diesel Presentation</td>
<td>3</td>
</tr>
<tr>
<td>Practice Diesel Presentation</td>
<td>3</td>
</tr>
<tr>
<td>Presentation</td>
<td>1</td>
</tr>
<tr>
<td>Diesel Written Report Due</td>
<td>1</td>
</tr>
<tr>
<td>Voice Team Finals Week</td>
<td>5</td>
</tr>
<tr>
<td>Break</td>
<td>9</td>
</tr>
</tbody>
</table>

- Architectural Design
- Site Design
- Structural Design
- Mechanical Design
- Tornado Shelter Design
- Building Integration
PROJECT MANAGEMENT: DESIGN PROCESS

Concept Design → Analytical Model → Proposed Design → Final Design

- Architectural Site
- Structural
- Mechanical
- Tornado Shelter
SITE

- **LOCATION**
 - Tulsa, OK
 - Brady Arts District

- **SIZE OF SITE**
 - ~1 acre

- **SITE USE OBJECTIVES**
 - Parking
 - Small Park
EXISTING SECOND FLOOR
COMPETITION PROPOSED FIRST FLOOR
FINALIZED FIRST FLOOR

Lobby Enhancement

Tornado Shelter

Fire Stair Tower
DESIGN GOALS & PRIORITIES

- TORNADO SHELTER DESIGN
- DETERMINE CAPACITY OF EXISTING STRUCTURE
- DESIGN NEW LATERAL LOAD RESISTING SYSTEM
- EXTERIOR WALL REHABILITATION
- STRUCTURAL RETROFITS FOR ARCHITECTURAL & MECHANICAL DESIGN
 - SLAB AND WALL PENETRATIONS
DESIGN CHALLENGES

- Tornado Shelter in an Existing Structure
- Accommodate Architectural Changes to Building Layout
- Collaborating with Mechanical Engineers
 - Protect the Mechanical Needs of the Tornado Shelter
- Different Methods of Analysis to Confirm Results
INNOVATIVE DESIGN

- 2-WAY CONCRETE SLAB
 - REVERSE ENGINEERING
 - CAPACITY ANALYSIS
- COMPUTER ANALYTICAL MODEL
 - SAP2000
 - CALIBRATED WITH HAND CALCULATIONS
ASSUMPTIONS

- **Maximum Capacities of 2nd Floor and Roof** to be 250 psf and 70 psf, respectively.
- **Exterior Wall Composition and Details**
- **Existing Concrete Allowable Compressive Strength** 1,200 psi
- **Existing Reinforcement Steel**
 - Rebar Allowable Stress 16,000 psi
- **Drilled Pier Foundation System to Bedrock**
Design Parameters

- **Non-Tornado Shelter Design Wind Speed:** 90 MPH
 - Importance Factor 1.15

- **Tornado Shelter Design Wind Speed:** 250 MPH
 - Use ASCE 7-05 Pressure Calculations
SAP2000 MODEL

- Columns – Frame Elements
- Slabs – Shell Elements
- Column Capitals – Rigid Links
GRAVITY LOAD STRUCTURAL SYSTEM

- **Direct Design Method – Hand Calculation**

- **SAP2000 Computer Model within 20% of Hand Calculations**
gravity load structural system

- minimum area of steel adequate for demand
 - existing slab
 - existing columns
- slab reinforcement
 - #7’s at 6” o.c. for 2nd floor
 - #7’s at 9” o.c. for roof
- actual working stress capacity
 - pending field testing
 - second floor: 350 psf live load
 - roof: 175 psf roof live load
Lobby Enhancement

- **Remove second floor slab above lobby**
- **Effective column length increased**
- **No additional reinforcement needed for exterior columns**
- \(\rho_g < 0.01 \) All Cases
TORNADO SHELTER DESIGN

- Loads from FEMA 361 Guidelines and ASCE 7-05
- Design Wind Speed 250 MPH
- Loads Applied to Entire Structure
- Max Uplift on Roof ≈ 200 PSF
Tornado Shelter Design

- Computer Model (SAP2000) for Demand
- Roof Able to Withstand Tornado Wind Forces
 - Von Mises Stress Plot
 - Top and Bottom Rebar Near Column Capitals
Uplift Capacity

- Soils and Foundation System
 - Geotechnical Engineering Report Provided
- Uplift Capacity Limited Due to Low Skin Friction From Clay Soil
- No Net Uplift Forces
Tornado Shelter Wall Design

- **Walls Between Columns**
- **Shear Walls: 8” Grouted Masonry Infill**
 - Walls with #6 @ 24”
- **Penetrations**
 - 6 Doors
 - 1 Elevator Door
 - 2 - 18” x 18” Louvers
Exterior Wall Rehabilitation

- **Exterior Masonry To Remain**
- **New Backup Wall Designed**
- **Two-Types of Walls**
 - **Shear Walls**: 8” grouted masonry infill walls with #6 @ 24”
 - **4-1/2” Deep Steel Studs with 12 Gauge Wall Thickness AT 16” O.C.**
Lateral Load Resisting System

- Tornado Shelter Walls Designed as Shear Walls
- Center of Rigidity Matches Center of Gravity
 - Reduce Torsional Effects
SUSTAINABILITY

- LEED V3 2009
 - Silver Certification (55 Points)
- Existing Building
 - Material Conservation
- Recycled Construction Materials
Client Budget

<table>
<thead>
<tr>
<th>Budget</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>$3,227,825</td>
</tr>
<tr>
<td>Furnishings</td>
<td>$775,000</td>
</tr>
<tr>
<td>Design</td>
<td>$330,000</td>
</tr>
<tr>
<td>Permitting Fees</td>
<td>$10,000</td>
</tr>
<tr>
<td>Lawyer & Bond Costs</td>
<td>$50,000</td>
</tr>
<tr>
<td>Site Acquisition</td>
<td>$0</td>
</tr>
<tr>
<td>Total:</td>
<td>≈ $4,400,000</td>
</tr>
</tbody>
</table>
INTEGRATION AND COLLABORATION

- **COORDINATION**
 - Architectural, Structural, Mechanical, etc.
- **TORNADO SHELTER**
- **NEW BACKUP WALL CONSTRUCTION**
- **BUILDING INFORMATION MODELING: REVIT 2010**
RETROFIT OF HISTORIC WAREHOUSE TO NEW MEDICAL CLINIC IN TULSA, OK

STRUCTURAL

TEAM 2010-5

JACQUELINE BAYER
JEFFREY DOWGALA
LIAM HENDRICKEN
LAUREN McNALLY