Chapter 7
Trusses, Frames, and Machines
7.2 Plane Trusses

Before this chapter

Determine the reactions, $R_1$ and $R_2$, of a rigid body subjected to a pair of forces $F_1$, and $F_2$.

In this chapter

Determine the reactions, $R_1$ and $R_2$, and the forces in nine rigid members that are joined together with six pin joints, subjected to a pair of forces $F_1$, and $F_2$. 
7.2 Plane Trusses

Idealized trusses
1. Members are connected together at their ends only.
2. Members are connected together by frictionless pins.
3. Loads are applied only at the joints. (Thus, all members are two-force members.)
4. Weights of members are neglected.

An actual riveted truss joint, which transmits both forces and moments among connecting members

An idealized frictionless pin connection, which transmits forces among connecting members, but not moments. This assumption can be justified so long as the members are long.
7.2 Plane Trusses

A triangle is the building block of all plane trusses

\[ m = 2j - 3 \]

\( m = \text{NUMBER OF MEMBERS}; \quad j = \text{NUMBER OF JOINTS} \)

Total unknowns: \( m \) (one for each member) + 3 (3 support reactions).

Each joint yields two equations \( (\Sigma F_x = 0, \Sigma F_y = 0) \)

Is a truss always “stable” and “solvable” when \( m = 2j - 3 \) is satisfied?
7.2 Plane Trusses

A triangle is the building block of all plane trusses

\[ m = 2j - 3 \]

\( m = \text{NUMBER OF MEMBERS}; \quad j = \text{NUMBER OF JOINTS} \)

Total unknowns: \( m \) (one for each member) + 3 (3 support reactions).

Each joint yields two equations (\( \Sigma F_x = 0, \Sigma F_y = 0 \))

Is a truss always “stable” and “solvable” when \( m = 2j - 3 \) is satisfied?
7.2 Plane Trusses
Rigidity and Solvability of A Truss

\[ m = 2j - r \]

- \( m \): # of Members
- \( j \): # of Joints
- \( r \): # of Reactions

**Figure 7-8** Plane truss with internal rigidity.

- \( j = 9 \)  \( m = 15 \)
- \( 2j - 3 = 15 = m \)

**Figure 7-9** Plane truss that lacks internal rigidity.

- \( j = 9 \)  \( m = 14 \)
- \( 2j - 3 = 15 \neq m \)

**Figure 7-10** A simple planar truss constructed using triangular elements.

- \( j = 6 \)  \( m = 9 \)
- \( 2j - 3 = 9 = m \)

**Figure 7-11** Plane truss with internal rigidity.

- \( j = 9 \)  \( m = 15 \)
- \( 2j - 3 = 15 = m \)

- \( j = 9 \)  \( m = 14 \)
- \( 2j - 3 = 15 \neq m \)

- \( j = 6 \)  \( m = 9 \)
- \( 2j - 3 = 9 = m \)

- \( j = 9 \)  \( m = 15 \)
- \( 2j - r = 15 = m \)

- \( j = 9 \)  \( m = 14 \)
- \( 2j - r = 14 = m \)

- \( j = 6 \)  \( m = 9 \)
- \( 2j - r = 9 = m \)
7.2 Plane Trusses

\[ m = 2j - r \]

For truss (b):
\[ j = 8 \quad m = 12 \quad r = 3 \]
\[ 2j - r = 13 > m = 12 \]

For truss (c):
\[ j = 8 \quad m = 14 \quad r = 3 \]
\[ 2j - r = 13 < m = 14 \]

For truss (d):
\[ j = 10 \quad m = 16 \quad r = 3 \]
\[ 2j - r = 17 > m = 16 \]

Yet, it is unstable!
7.2 Plane Trusses
Method of Joints

1. Draw a free-body diagram of the entire structure and determine the reactions (if \( r = 3 \)).
2. Draw free-body diagrams for all members (assume tensile forces in all members) and all joints.
3. Set up the equilibrium equations for each joint and solve them one joint at a time, begin with those that have at most two unknowns.
4. Check the results at the last joint.
7.2 Plane Trusses
Method of Joints

Reactions

\[ \sum M_A = (8)B_y - (4)(1000) - (8)(2000) = 0 \]
\[ \sum M_B = -(8)A_y - (4)(1000) = 0 \]
\[ \sum F_x = A_x + 1000 = 0 \]

\[ A_x = -1000 \text{ lb} \]
\[ A_y = -500 \text{ lb} \]
\[ B_y = 2500 \text{ lb} \]
7.2 Plane Trusses
Method of Joints

\[ \begin{align*}
A : & \quad \sum F_x = T_{AB} + T_{AC} \cos \theta - 1000 = 0 \\
& \quad \sum F_y = T_{AD} + T_{AC} \sin \theta - 500 = 0 \\
B : & \quad \sum F_x = T_{AB} = 0 \\
& \quad \sum F_y = T_{BC} + 2500 = 0 \\
C : & \quad \sum F_x = -T_{CD} - T_{AC} \cos \theta = 0 \\
& \quad \sum F_y = -T_{BC} - T_{AC} \sin \theta - 2000 = 0 \\
D : & \quad \sum F_x = T_{CD} + 1000 = 0 \\
& \quad \sum F_y = T_{AD} = 0
\end{align*} \]

\[ \begin{align*}
D(T_{AD}, T_{CD}) \Rightarrow C(T_{AC}, T_{BC}) \\
\Rightarrow A(T_{AB}, T_{AC}) \Rightarrow B(T_{AB}, T_{BC})
\end{align*} \]
7.2 Plane Trusses
Method of Joints

\[ m = 2j - r \]

\[ j = 4 \quad m = 5 \quad r = 3 \]
\[ 2j - r = 5 = m \]

\[ j = 4 \quad m = 5 \quad r = 4 \]
\[ 2j - r = 4 < m = 5 \]

\[ j = 4 \quad m = 5 \quad r = 3 \]
\[ 2j - r = 5 = m \]

\[ j = 4 \quad m = 5 \quad r = 4 \]
\[ 2j - r = 4 < m = 5 \]
7.2 Plane Trusses
Zero-Force Members

\[ \sum F_y = 0 \implies T_{BC} = 0 \]
\[ \sum F'_{y'} = 0 \implies T_{CD} = 0 \]
7.2 Plane Trusses
Zero-Force Members

Zero-force member: $BC, CD$

Zero-force member: $AB, AC$

Zero-force member: $AB, AC, BC$
7.2 Plane Trusses
More About Zero-Force Members

Zero force members cannot simply be removed from the truss and discarded, as they are needed to guarantee stability of the truss.

If members $BD$ and $AD$ are removed, then a slight disturbance would cause joint $D$ to buckle outward. The equilibrium at joint $D$ (see the free-body diagram) requires that

$$
\sum F_x = -T_{DE} \cos \phi + T_{CD} \cos \phi = 0 \Rightarrow T_{DE} = T_{CD}
$$

$$
\sum F_y = T_{DE} \sin \phi + T_{CD} \sin \phi = 0 \Rightarrow T_{DE} = -T_{CD}
$$

Yet equilibrium at joint $C$ requires that $T_{CD} \neq 0$. Thus, joint $D$ will continue to buckle outward and the truss is no longer stable.
7.2 Plane Trusses
More About Zero-Force Members

Zero-force members may become non-zero-force members, or vice versa, as the load moves from one location to another.

Consider a “Warren” truss with vertical supports.
(See http://www.geocities.com/Baja/8205/truss.htm for other types of bridge truss)
7.2 Plane Trusses
Other Bridge Trusses

Warren Truss w/o Vertical Supports

Pratt Truss

Quadrangular Warren Trusses
7.2 Plane Trusses
More About Zero-Force Members
Washington Crossing Bridge

Tension-only members
7.2 Plane Trusses
More About Zero-Force Members

Cross members are slender tension-only members. Any compressive force will buckle the member, render it useless.