


Carlos Otávio Araujo Gussoni
Rua 12-B, 621, Rio Claro, São Paulo, Brazil, CEP 13506-746. E-mail: cogusson@gmail.com.

Received 19 January 2018; final revision accepted 27 June 2018; published online 21 June 2019

A Nocturnal Curassow
Nothocrax urumutum with chicks in eastern Ecuador

Nocturnal Curassow Nothocrax urumutum inhabits wet forests of upper and middle Amazonia. Captive studies and field records suggest that N. urumutum often forages in daylight, but the species is rarely seen in the field. Few nests have been found and very little is known about the species’ breeding biology in the wild. At 16h50 on 22 May 2018, in hilly terra firme forest at Tiputini Biodiversity Station, Orellana province, north-east Ecuador, under a clear sky, together with two companions, I turned a sharp corner in the trail as it crested a hill (c.00°37’55”S 76°09’23”W; 240 m). On the trail c.2 m in front of me I had a clear view of an adult N. urumutum. I identified the bird by its uniform rusty head (except a black crest), neck, breast and wings, slaty tail with buff terminal band, distinct crescent of bare yellow skin above the eye, and orange-red bill. It had apparently just emerged from dense herbaceous cover along the trail which, coupled with the slope, may have obscured my approach. The adult ran a few steps, then stopped in the trail, gave a single-note squawk, raised its crest, and crouched while fanning its wings and tail. I then noted three chicks running with the adult. They were dark and dusky overall; I did not see any markings. I estimated them to be 16–18 cm tall. Initially, they ran under the cover of the adult’s fanned wings and tail. The chicks emitted high-pitched peeps and ran away from me along the trail and off into the vegetation, while the adult remained with wings and tail fanned. It then resumed its normal posture and ran after the chicks. At this point, a fourth chick ran from the cover from where the adult had originally appeared, and fled after the latter. We scanned the area for c.10 m from the initial encounter without seeing or hearing additional birds, nor did we relocate the birds I had seen. There was no fallen fruit evident on the ground in the area we searched.

Although N. urumutum vocalises from elevated perches at night, it is increasingly recognised to be not strictly nocturnal. There are reports of birds feeding on fallen fruit in the morning and before dusk. The network of camera traps on trails and at salt licks (saladeros) at Tiputini Biodiversity Station has recorded N. urumutum primarily in the afternoon (15h30–17h30), with a few records in early morning (06h30–06h45; D. Mosquera pers. comm.). Transsects of vocalising birds at Tiputini have detected N. urumutum in pre-dawn/early morning hours. The birds I observed did not appear to be foraging, as no fruit was found in the vicinity, but they may have been in transit to a food source. Surveys of forested areas subject to low hunting pressure using vocalising birds to estimate densities have revealed that N. urumutum is broadly as abundant as other large-bodied cracids with which it co-occurs. One explanation for the low frequency of N. urumutum sightings is its propensity to freeze or to flee by running into cover, rather than the more typical curassow response of flying to perches when disturbed. The species’ chicks are unusual among cracids in having primary and secondary flight feathers on hatching; nevertheless, the chicks I observed escaped by running.

The group of chicks accompanying the adult was larger than expected based on the clutch size of two eggs (occasionally three) reported for N. urumutum. The four chicks I observed were of approximately equal size. Either the clutch was unusually large, or the adult was accompanying chicks from more than one nest (behaviour otherwise unknown in Cracidae). I did not see or hear other adults in the area; however, as adult N. urumutum sometimes travel in small groups it is possible that two or more adults were present. Based on their size and plumage, the chicks I observed were probably c.4 weeks old (D. Brooks pers. comm.). I estimate they hatched in late April, with eggs laid in late March (assuming incubation period of 28 days). At Tiputini, rainfall generally increases in March following a relatively dry period in November–February. The timing of N. urumutum breeding at Tiputini might therefore track the seasonal availability of food resources.
Following a peak in tree and liana flowering that ends in December, ripe fruit availability on trees is highest in March, presumably followed by peak abundance of fallen fruit available to ground-feeding curassows.

Acknowledgements
José Macanilla and Siobhan O’Donnell assisted in the field. Thanks to Daniel Brooks, Harold Greeney, Diego Mosquera, Kelly Swing and Jason Weckstein for commenting on the paper and/or sharing information on cracid biology. My research was supported by the Drexel University Office of International Programs, Tiputini Biodiversity Station, and the Universidad San Francisco de Quito.

References

Sean O’Donnell
Drexel University, Dept. of Biodiversity Earth & Environmental Science and Biology, Philadelphia, PA 19104, USA. E-mail: so356@drexel.edu.

Received 9 October 2018, final revision accepted 23 January 2019; published online 21 June 2019

New records of Puna Ibis Plegadis ridgwayi in the Bolivian lowlands
Puna Ibis Plegadis ridgwayi occurs in the highlands of central Peru, Bolivia, northern Chile and north-west Argentina, and is a non-breeding visitor to, and a local breeder, on the Peruvian coast. In Bolivia, it has been recorded in every department except Pando, Beni and Santa Cruz, at 1,500–4,600 m (exceptionally to 700 m), and in four ecoregions:

Figure 1. New localities for Puna Ibis Plegadis ridgwayi in Bolivia reported in this paper. Ecoregions follow Ibisch et al.4.