Stability Analysis: Routh Criterion and Root Locus

MEM 639 Real-Time Microcomputer Control 1
Feedback is Good

Recall:

\[G_{ol}(s) = \frac{b}{s + a} \]

Given step input \(u(t) = 1 \leftrightarrow U(s) = \frac{1}{s} \)

Then

\[Y(s) = \frac{b}{s + a} \cdot \frac{1}{s} = \frac{b}{s(s + a)} \]

Inverse Laplace yields

\[y(t) = \frac{b}{a} \left(1 - e^{-at}\right) \]

So output converges

\[\lim_{t \to \infty} y(t) = \frac{b}{a} \]

Since \(y(t) \neq 1 \) there’s finite error

Compare with (unity) feedback

\[Y(s) = \frac{G_{ol}}{1 + KG_{ol}} U(s) \]

Step input:

\[Y(s) = \frac{b}{s(s + a + Kb)} \]

Inverse Laplace:

\[y(t) = \frac{b}{a + Kb} \left(1 - e^{-(a+Kb)t}\right) \]

If \(K=1 \), output converges

\[\lim_{t \to \infty} y(t) = \frac{b}{a + Kb} = \frac{b}{a + b} \]

Still finite error – but smaller

So feedback is good!

© Copyright Paul Oh, 2012
Root Locus: A Graphical Tool

Description: Illustrates how the closed-loop pole positions vary as the gain changes from 1 to infinity.

Motivating Example: Proportional Control – Easiest Type of Feedback

Given that \(G_{ol}(s) = \frac{b}{s+a} \) then \(Y(s) = \frac{K_p b}{s(s + a + K_p b)} \)

Root locus plots the CL pole positions (on s-plane) as gain changes.
More Illustrative Example: Pre-cursor to Root Locus

Suppose motor given by:

\[G_{ol} = \frac{5200}{(s + 10)(s + 1000)} \]

Previous slide says:

\[Y(s) = \frac{K_p G_{ol}}{1 + K_p G_{ol}} U(s) \]

Consequently CLTF:

\[G_{cl}(s) = \frac{Y(s)}{U(s)} = \frac{K_p 5200}{(s + 10)(s + 1000) + 5200 K_p} \]

For \(K_p = 2 \)

\[G_{cl}(s) = \frac{10400}{s^2 + 110s + 11400} \]

For \(K_p = 5 \)

\[G_{cl}(s) = \frac{26000}{s^2 + 110s + 27000} \]

Try Matlab Program: mtr_p.m

Calculate System properties: \(K_p = 5 \)

\[\ln \frac{0.3}{0.037} = \zeta \cdot 6.28 \]

\[\zeta = 0.32 \]

Also, if T=0.0375 sec then

\[\omega_n = \frac{2\pi}{0.0375\sqrt{1 - 0.32^2}} = 178 \text{ rad/s} \]

© Copyright Paul Oh, 2012
Try Matlab RLTOOLS

For $K_p = 5$

$$G_{cl}(s) = \frac{26000}{s^2 + 110s + 27000}$$

Closed-loop poles:

$$s = -56.2 \pm 154j$$

See report:

$$\zeta = 0.335$$

$$\omega_n = 164 \text{ rad/s}$$

Matches calculations shown on previous slide

So, how does one generate the root locus plot?
Root-Locus Step-by-Step

Problem: Plot the root-locus for the OLTF \(G(s) = \frac{10(Ks + 1)}{s^2 + 8s + 10} \)

Step 1: Recall that \(1 + KG_o = 0 \) where \(G_o \) is the OLTF

Hence \(1 + KG_o = 0 \) yields \(1 + \frac{10(Ks + 1)}{s^2 + 8s + 10} = 0 \) or \(s^2 + 8s + 10 + 10Ks + 10 = 0 \)

Consequently \(K = \frac{-20 - s^2 - 8s}{10s} \) or \(\frac{K10s}{20 + s^2 + 8s} = -1 \)

Therefore \(1 + KG_o = 0 \) suggests \(1 + K \left(\frac{10s}{s^2 + 8s + 20} \right) = 0 \)

This is the TF one must work with

© Copyright Paul Oh, 2012
Find poles and zeros of \(G_o(s) = \frac{10s}{s^2 + 8s + 20} \)

Yields poles \(s = -4 \pm 2j \) and zeros \(s = 0 \) \((1) \)

Step 2: Calculate asymptotes where \(\angle s = \pm \frac{i\pi}{n-m} \) and \(i = 1, 3, 5,… \)

\[G_o(s) = \frac{10s}{s^2 + 8s + 20} \]

\(m = 1 \)

\(n = 2 \)

Have \(n-m \) asymptotes

Hence \(\angle s = \pm i\pi \)

Thus 1 asymptote at: \(s = \pi \) \((2) \)

Step 3: Calculate centroid \(\sigma_c \) where \(\sigma_c = \frac{\sum \text{poles} - \sum \text{zeros}}{n-m} \)

\[\sigma_c = \frac{(-4 + 2j - 4 - 2j) - 0}{2 - 1} = -8 \] \((3) \)
As gain changes, the locus due to poles will collide
and asymptotically rides along $\pm \pi$
NB: locus always goes from Pole to Zero

Step 4: Calculate breakaway point with $\frac{dK}{ds} = 0$

Recall $K = \frac{-20 - s^2 - 8s}{10s}$
Hence $\frac{dK}{ds} = \frac{-2s^2 - 8s + 20 + s^2 + 8s}{10s^2}$

And with $\frac{dK}{ds} = 0$ then $s = \pm 2\sqrt{5} = \pm 4.47$ \[(4)\]
Step 5: Calculate angle of departure $\angle KG(s) = 180^0 + K360^0$

where $\angle KG(s) = \sum \angle \text{zeros} - \sum \angle \text{poles}$

$\angle KG(s) = 153.4 - 90 - \theta = 180 + K360$

Hence $\theta = -116.6^0$ (5)

Step 6: Pre-sketch

Root locus will never cross Imaginary axis, so we’re finished

© Copyright Paul Oh, 2012
Routh Stability Criterion

Description: Mathematical trick to assess if a system is asymptotically stable \textit{without} explicitly calculating roots

Motivating Example: Design a PID controller for the following

\[G_{ol}(s) = \frac{1}{s^5 + 4s^4 + 8s^3 + 9s^2 + 6s + 2} \]

Suppose some poles are unstable. PID-type controllers can’t solve stability. Routh Stability Criterion (RSC) used to determine the number of unstable poles. So one does not waste design time.

Methodology:

- If • any coefficient of polynomial is 0
- or • any sign changes in the polynomial coefficients

Then there are unstable or marginally stable roots

Otherwise need to form Routh matrix…
Constructing the Routh Matrix

Suppose have nth order polynomial \(f(s) = a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 \)

Create Routh Matrix:

\[
\begin{array}{cccc|c}
R^n & a_n & a_{n-2} & a_{n-4} & \cdots & 0 \\
R^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0 \\
R^{n-2} & b_1 & b_2 & b_3 & \cdots & 0 \\
R^{n-3} & c_1 & c_2 & c_3 & \cdots & 0 \\
\vdots & & & & & \\
R^2 & d_1 & d_2 & 0 & \cdots & 0 \\
R^1 & e_1 & 0 & 0 & \cdots & 0 \\
R^0 & f_1 & 0 & 0 & \cdots & 0 \\
\end{array}
\]

Where

\[
\begin{align*}
b_1 &= \frac{a_n a_{n-3} - a_{n-1} a_{n-2}}{a_{n-1}} \\
b_2 &= \frac{a_n a_{n-5} - a_{n-1} a_{n-4}}{a_{n-1}} \\
b_3 &= \frac{a_n a_{n-7} - a_{n-1} a_{n-6}}{a_{n-1}} \\
c_1 &= \frac{b_1 b_3 - a_{n-1} b_2}{b_1} \\
c_2 &= \frac{b_1 b_3 - a_{n-1} b_2}{b_1} \\
c_3 &= \frac{b_1 b_3 - a_{n-1} b_2}{b_1}
\end{align*}
\]

Repeat until all remaining \(b_i \) are zero

Also

\[
\begin{align*}
c_1 &= \frac{b_1 b_3 - a_{n-1} b_2}{b_1} \\
c_2 &= \frac{b_1 b_3 - a_{n-1} b_2}{b_1} \\
c_3 &= \frac{b_1 b_3 - a_{n-1} b_2}{b_1}
\end{align*}
\]

Repeat until all remaining \(c_i \) are zero

© Copyright Paul Oh, 2012
Example: How many unstable roots for \(f(s) = s^5 + 4s^4 + 8s^3 + 9s^2 + 6s + 2 \)

Step 1: Any coefficients zero? No.
Any sign changes in coefficients? No.

Step 2: Form Routh Matrix

\[
\begin{array}{cccc}
 s^5 & 1 & 8 & 6 \\
 s^4 & 4 & 9 & 2 \\
 s^3 & b_1 & b_2 & 0 \\
 s^2 & c_1 & c_2 & 0 \\
 s^1 & d_1 & 0 & 0 \\
 s^0 & e_1 & 0 & 0 \\
\end{array}
\]

\[
\begin{align*}
 b_1 &= \frac{4 \cdot 8 - 9}{4} = 5.75 \\
 b_2 &= \frac{4 \cdot 6 - 1 \cdot 2}{4} = 5.5 \\
 c_1 &= \frac{9b_1 - 4b_2}{b_1} = \frac{9(5.75) - 4(5.5)}{5.75} = 5.17 \\
 c_2 &= 2 \\
 d_1 &= 5.5 \\
 d_2 &= 5.5 \\
 e_1 &= 2
\end{align*}
\]

<table>
<thead>
<tr>
<th>(s^5)</th>
<th>(s^4)</th>
<th>(s^3)</th>
<th>(s^2)</th>
<th>(s^1)</th>
<th>(s^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b_1</td>
<td>b_2</td>
<td>0</td>
<td>c_1</td>
<td>c_2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>d_1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.75</td>
<td>5.17</td>
<td>2</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.5</td>
<td>0</td>
<td>e_1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Zero sign changes in column. Hence 0 unstable poles.