The Designer’s View

AE-544 – Week-8

J. Mitchell
Hypothetical Building

Location: Atlantic City
Use: Apartment Building
Exterior: Brick Veneer
Structure: Steel Frame

Dimensions:
- Height: 113.3 m
- Width: 69.4 m
- Basement: 18.0 m
- Ground Floor: 12.5 m
What are the elements of the building envelope?

- **Roof** – will cover next week
- **Basement** – Walls, Floor
- **Wall** – windows, doors, materials
What are the forces that Impinge on it?

- **Load** – e.g. live loads applied to envelope
 - Wind
 - Seismic
- **Climate**
 - Thermal – daily & seasonal
 - Moisture – All phases
- **Internal**
 - Thermal
 - Moisture
- **Time** – in the sense of changes in building, particularly materials
What are the problems we must anticipate?

- Structural Failure
- Environment Penetration
 - Air
 - Objects
 - Moisture
- Operating costs – primarily HVAC, but also maintenance
- Envelope deterioration
- Chemical – Corrosion, efflorescence, calcification
How Do We Address the Potential Problems?

- Design to Control
 - Stress
 - Movement
 - Thermal flow
 - Moisture flow
 - Materials mismatch
- Supervise Construction
- Observe and Maintain
Know the Potential Weak Points

- Flat roofs
- Exterior wall “barriers”
- Parapets
- Corners
- Dissimilar materials
- Membrane penetrations
- Material connectors
- Membrane support
- Below Grade
Designing to Control Stress

- Calculate applied loads
 - Wind
 - Blast
 - Seismic
- Design section to resist
 - Calculate stresses in material
Design to Control Movement

- Locate Joints to accord with architectural goals and physical requirements
 - Control
 - Expansion
- Select Joint Materials
- Size Joints
 - Calculate max requirement
Design to Control thermal Flow

- Establish goal – often from HVAC
- Design section
- Calculate Thermal Transfer
 - Include thermal bridging
 - Max periods – winter + summer
- Calculate Thermal Profile
 - Check that works with materials movement
Design to Control Moisture Flow

- Consider Phases: Solid, Liquid, Gas
- Design to address how moisture moves
 - Gravity
 - Kinetic Energy
 - Surface tension
 - Capillary Suction
 - Air Transport
 - Diffusion
Controlling Gravity Moisture

- **Liquid**
 - Cover entrances
 - Slope elements
 - Use Flashing
 - Use Weep holes

- **For Snow, Ice, prevent falling off**
 - Design thermally to prevent accumulation
Controlling Kinetic Energy Moisture

- For Liquid
 - Cover entrances
 - Use offsets in holes
- For Solid
 - Ice – prevent dropping on people
 - Snow – provide screens
Controlling Surface Tension

- For Liquid
 - Use Drips
 - Use Sealants
Controlling Capillary Suction

- For Liquid
 - Prevent absorption – water repellent coating
 - Block movement – membrane
 - Capillary break – in flashing and overlaps
Controlling Air Transport

- **Solid & Liquid**
 - cover entrances
 - Prevent air Flow

- **Gas – Water Vapor**
 - Barrier on Exterior
 - Thermal analysis to identify condensation points
 - Air Barrier(s)
Controlling Diffusion

- Identify Vapor Pressure Conditions
 - Inside and Outside
 - Different seasons
- Calculate Saturated Vapor Pressure Gradient
- Calculate Actual Vapor Pressure Gradient
- Look for Conflicts
- Calculate seasonal accumulation
Observe Construction

- Check Shop Drawings for design intent
- Review sample Assemblies
- Review performance tests
- Check actual installation
- Perform commissioning tests
Observe and Maintain Building

- Actual performance should be monitored
 - Note that this is often not designer’s responsibility
 - Thermal performance against predicted
 - Moisture Appearance
 - Visible or sensor signs of deterioration
 - There is **much** opportunity for improvement

- Maintain the Building
 - There should be a Preventive maintenance schedule
 - There seldom is for building envelopes