Table of Contents

- Table of Figures ... 2
- Introduction .. 3
- The Measurement Process ... 4
 - Planning .. 4
 - Implementation .. 7
 - Evaluation ... 8
- Differences in Small and Large Organizations .. 11
- Factors Effecting Implementing Metrics Programs .. 13
 - Stake Holders .. 13
 - Focus ... 16
 - Business Environment ... 17
 - Current Condition ... 19
- Conclusion ... 20
- Works Cited ... 22
Table of Figures

Figure 1: The Goal, Question Metric Process (Perkins, Smith, & Peterson, 2003) ... 5

Figure 2: Components of the Planning Phase (McAndrews, 1992) ... 6

Figure 3: Components of the Implementation Phase (McAndrews, 1992) .. 8

Figure 4: The evaluation phase (McAndrews, 1992) .. 10

Figure 5 - Assessment Results of EPA ... 12

Figure 6 - Control Cycles and Stakeholders ... 14

Figure 7 - Visualizing OrgB Risk Ratings .. 15

Figure 8 - Above: Continuous Plan-Do-Check-Act Cycle ... 17

Figure 9 - Growth Stages of Small Business ... 19
Introduction

In any organization, a certain amount of rules and procedures are needed in order to bring a degree of certainty and orderliness to what would otherwise be a large number of people working in several haphazard directions. While the number of rules may change depending on the type, size, and environment of the organization, the fact remains that without them, that particular organization will struggle to find success if it doesn’t completely fail altogether.

In a small organization, these rules and/or processes are typically used to promote efficiency as much as they are used to implement discipline, as the organization needs to get as much value from every cent and minute of labor it has. However, in order to see whether or not their current rule sets and practices are effective, the organization must define and develop some way of measuring and then evaluating their processes. Without that measurement ability, the organization could be replacing a perfectly usable process with a broken one, or be turning a blind eye to a poorly engineered process when it would be much better suited to fix it.

Therefore, it is imperative that small organizations create a measurement process for their critical practices and actions. In many of today’s small organizations, the development, implementation, and use of software would fall under the critical umbrella, as many other business processes, including those that generate revenue for the business, utilize various pieces of software and the technology that encompasses it. As a result, the measurement process in regards to software becomes a key indicator of just how effectually the organization is generating income using the current tools and rules that it has. While some components of such an indicator may vary from organization to organization, the crucial pieces are able to be generalized and shared across organizational boundaries.

In the areas that follow, the manner of developing, implementing, and evaluating such a process is analyzed to showcase the wealth of options an organization has when choosing to insert a software
measurement process into their environment. Additionally, key differences between the methods employed by small and large organizations are exposed in order to underline the need for a distinct process for a smaller sized organization. Moreover, any additional factors that may enhance the measurement process are scrutinized in order to provide a template for a high possibility of implementation success.

The Measurement Process

Planning

Before an organization can even begin to think about the development and implementation of a measurement process, it first has to do some internal research in order to plan and prepare for its progression. Part of this research is defining the scope of the measurement process by generating and clearly describing what needs measurement and who will review and analyze these measurements (McAndrews, 1992). These can be referred to as measurement objectives, which then need the approval and participation of any relevant stakeholders as well as the requirements team working on the measurement process project (McCurlay, Zubrow, & Dekkers, 2008). Often times, these measurement objectives can be derived from the goals and objectives of the organization, albeit with small tweaks to better define them for the process. It is imperative that measures related to decision making are identified and paired with organizational goals and objectives, as a failure to do so will cause the organization to spend critical resources unnecessarily collecting meaningless or rarely used data (McAndrews, 1992). A properly defined goal lends itself well to questions about its progress, such as what the current spending rate is, instead of simple “fact” based questions, such as how large the project is (Perkins, Smith, & Peterson, 2003). These questions can then be answered with a relevant measurement that will be included in the process (McAndrews, 1992).
Once the information and data needs of an organization have been identified, the metrics that will be used to gauge whether those needs are being satisfied must be developed (Perkins T. K., 2001). This phase involves first defining the metrics and then defining the procedures that will be used to collect data for analytical use with each metric (McAndrews, 1992). It is important to not define too many or too little metrics at this part of the process, as both can lead to eventual disaster. Not having enough metrics and their associated accounting procedures will put the organization at risk for missing some critical indicator of quality, while having too many metrics to keep track of will prohibit meaningful analysis of the data the organization is collecting (Augustine & Schroeder, 1999). Accordingly, the organization should start with a small set of metrics that will show the benefits of going to the trouble of collecting and analyzing data, thereby generating more organizational commitment and allowing for the expansion into more metrics (Grable, Jernigan, Pogue, & Divis, 1999).

This idea of the right amount of metrics is further supported by Timothy Perkins in “The Nine-Step Metrics Program,” as he claims that a single measurement with a high amount of information content is more useful and valuable than multiple ones each providing a subset of that content. Redundant measurements are typically the harbinger of a lack of direction and can cause the organization to reexamine the beginning parts of the process (Rautiainen, Lassenius, Vähäniitty, Pyhäjärvi, & Vanhanen, 2002). Often times, organizations will have more measurement than are necessary and offer no distinct value in order to keep up some semblance of metric tradition. These superfluous measurements can and need to be discarded or condensed in order to reduce the level of complexity and cost of the process (Perkins T. K., 2001). Despite leading to better overall performance,
the use of a measurement process will require an up-front investment of three to eight percent of the project’s overall cost; by keeping the measurement scope of the project to a realistic level, the initial investment is preserved at a pragmatic amount as well (Grable, Jernigan, Pogue, & Divis, 1999).

![Figure 2: Components of the Planning Phase (McAndrews, 1992)](image)

Another important factor to consider when developing metrics is how much of an impact the presence of the metric will have on the relevant workflow. Metrics with the smallest amount of direct involvement in a project should be selected as to minimize the chance of them compromising the endeavor (Perkins, Smith, & Peterson, 2003). In order to affirm that the metrics developed will not disturb the workflow, it may be useful to engage in additional research through the use of questionnaires and interviews to map out the individual work habits of the members of the organization (McAndrews, 1992). These consultations can also have the supplementary benefit of explaining to members of the organization, including senior management, the need and justification for such metrics, which helps to drive acceptance of both them and the process as a whole (Augustine & Schroeder, 1999).
Lastly, the ease (or lack thereof) of collecting relevant data to line up against the proposed metrics must be considered in this phase. Measurements that involve easily tabulated data are more desirable and likely to gain traction than those metrics that encompass data that requires a large amount of time and resources to properly gather (Perkins T. K., 2001). The ability for the collected data to be stored within your storage mechanism of choice is also an element of the ease of use of data (McAndrews, 1992). However, the capability to see the difference between measurements with readily available data and measurements with hard to capture data is not always apparent at this point in the process. Therefore, it is important the organization reviews all metrics outlined in this phase once the process is implemented, and makes changes to streamline data collection processes and their associated metrics if the need should arrive post-implementation (Augustine & Schroeder, 1999).

Implementation

Once the objectives and metrics to meet those objectives have been identified and developed, the organization can then move towards implementing the process on software projects. This phase is when more members of the organization become involved in the process; even though properly developed and outlined measurements and goals can pave the way, it is up to people to collect the right data for evaluation (Augustine & Schroeder, 1999). To minimize the chance for collection problems, training is needed for those who will assemble the data, as well as management who will then view and use it (Grable, Jernigan, Pogue, & Divis, 1999). Any involved individuals should be collecting data at predefined intervals, then validating said data to ensure consistent collection and reporting across the organization as well as to prevent redundant data from being gathered and analyzed (Perkins, Smith, & Peterson, 2003). Moreover, members of the organization should regularly maintain that all the desired types of data are being included in the collection, and any extraneous records are not involved unless explicitly stated otherwise. This check prevents data scope creep from bogging down the process and preventing it from accomplishing its overall goal (McAndrews, 1992). Even with these safeguards in
place, it can often take a number of iterations over a period of time to have all the data collecting members of an organization using the same proper methods (Augustine & Schroeder, 1999).

With the appropriate data collected, the organization can then begin to analyze said data for trends and developments. It is important to institute rigorous analysis during this phase of the process, as it will create quality insights that can then combined into a report that is accurate of the project in question (Perkins T. K., 2001). During the course of the analysis, members of the organization should also be observant of any feedback of the process that could be used to refine the procedures of previous phases in order to ensure better data collection and analysis in the future (McAndrews, 1992). When results emerge from this analysis activity, they are delivered to the designated individuals and groups, which may include management or senior management, for review (Perkins, Smith, & Peterson, 2003). Imperative in this stage is that all data collected should have an “analyzed by” due date as well as a justification for the analysis to take place; otherwise, senior management can question the timeliness and importance of the data in order to avoid accepting unfavorable analysis results (Augustine & Schroeder, 1999).

Evaluation

With the measurement process designed and implemented, the final step of its development is to step back and evaluate it as objectively as possible. Evaluation should first occur after the initial implementation of the process, with regular “update” intervals thereafter to determine if the process is consistently meeting the needs of the organization (Perkins, Smith, & Peterson, 2003). The probability that the defined metrics and collected data meets the organization’s objectives and needs increases
with experience, so the outcome of the first evaluation cannot be entirely predicted, but instead is usually a best guess (Perkins T. K., 2001). If the results of the initial evaluation are particularly alarming, then organizational changes, including management turnover, may occur. However, even if this is the case, it is important to stay the course with regards to the measurement process, as further evaluations will bring more subtle results and changes (Augustine & Schroeder, 1999).

With the results in hand, members of the organization, particularly management, will make decisions on the next courses of action. These decisions may include a need to update the measurement procedures for the next cycle of the process, to have more or less information in the reports in the future, or whether certain organizational goals are actually feasible and worthwhile to pursue (McAndrews, 1992). Additionally, cost estimation models should be recalibrated during each evaluation as more current information has been made available at that point (Grable, Jernigan, Pogue, & Divis, 1999). In order to make these decisions, the target audience of the process’ reports has to consider a number of factors, including any biases included in the analysis of the data, the timeliness of the data, changes in the organization’s direction since the last evaluation, and whether or not any productivity was lost or hindered by the presence of the measurement process (Perkins, Smith, & Peterson, 2003). Even with a relatively simple measurement process, combining these various factors into a valuable indicator for use in a decision can be a fairly complex task (Augustine & Schroeder, 1999). If unforeseen issues concerning the data or the analysis arise during the evaluation and decision phase, they should be queued for the next reporting cycle of the measurement process, and the individuals involved in the current evaluation should attempt to work around or past them in order to provide usable feedback on the outcome of the process (McAndrews, 1992).
After the evaluations have taken place, it is often advantageous for an organization to keep a running history of all metrics and measurements used throughout the course of the process. Such records can be used to avoid repeating past mistakes, generate better estimates for future processes and projects, and help justify the cost and resources put towards developing and maintaining the measurement process (Perkins, Smith, & Peterson, 2003). Alongside the information, organizations may find it beneficial to include important ideas, action items, and developments that came about during the evaluation phase in the repository (Pino, García, & Piattini, 2008). Preserving documentation on past measurements also allows the organization to perform analysis on longer periods of time than is possible in the evaluation phase of each reporting cycle of the process. This extended scrutiny may reveal trends that would otherwise be undetectable, such as whether or not the predetermined goals are cost-effective in the long run (Augustine & Schroeder, 1999).

Moreover, the organization can pair the historical data with events that occurred over the period of time measured to create a system of warnings that will be able to predict future problems (McAndrews, 1992).

If a small organization heeds these recommendations on the development, implementation, and evaluation of software measurement, it will be well on its way to formulating a process that will be a success for its goals and needs.

Figure 4: The evaluation phase (McAndrews, 1992)
Differences in Small and Large Organizations

While the procedure detailed in the previous section can work for an organization of any size, there are differences between small and large organizations that have to be accounted for during the development. In particular, the special characteristics of small companies means that any measurement and improvement program has to be developed and applied in a method unique to that organization (Pino, García, & Piattini, 2008). The necessity of creating such a distinctive process is made more difficult due to the fact that most of the literature that exists to educate organizations on doing so is concerned with large and complex programs for substantially sized companies (Rautiainen, Lassenius, Vähäniitty, Pyhäjärvi, & Vanhanen, 2002). Large organizations that publish these reports are typically academic institutions and companies with a desire for an increase in public image; on the other hand, smaller organizations are more concerned with staying solvent, so reports and submissions from them are much rarer (Grable, Jernigan, Pogue, & Divis, 1999).

When committing to the development and use of a measurement, small organization should not be overly concerned with ensuring that their program will lead to an ISO or SEI certification. Achieving such an accreditation is naturally difficult for an organization of smaller stature, as they do not have the time, money, and resources to implement a process with the degree of complexity needed for such a qualification (Pino, García, & Piattini, 2008). Instead, a smaller organization would be better suited to specifying the process’ “length, content, and number of iteration cycles” so that it will work with the limited amount of resources and manpower that have been made available (Rautiainen, Lassenius, Vähäniitty, Pyhäjärvi, & Vanhanen, 2002). By doing so, the organization will give itself the opportunity to maximize the value of its measurement process while at the same time minimizing the cost in resources that it took to develop it.
One successful model that has been proposed for small organizations is that of Express Process Appraisal, which is usable by establishments with even a minimal amount of experience in the area of software process improvement. EPA relies on interviewing the minimum amount of right personnel and getting truthful answers as well as limited cross-referencing to quickly translate the organization’s strengths and weaknesses into needs for measurement (McCaffery, Taylor, & Coleman, 2007). Instead of using expensive software packages to do automatic analysis of all data collected in the process, inexpensive database and spreadsheet tools are emphasized to track metric data and generate reports that are of meaning to management (Grable, Jernigan, Pogue, & Divis, 1999).

The overall success of EPA can be seen in Figure 5. This chart is a collection of data from six companies who implemented EPA. After implementation, they were graded on a scale of 1-100 in accordance with several process areas covered in CMMI, or Capability Maturity Model Integration. While they did not achieve perfect scores in those areas, the companies often had average or above average scores in all but one of the five areas, despite not committing the large amount of resources typically needed to become CMMI compliant. Therefore, for smaller organizations unable or unwilling to attempt CMMI certification, EPA may be a good approach to choose in order conform to at least some of the best practices that CMMI demarcates.
Factors Effecting Implementing Metrics Programs

As mentioned previously, it is typically more common for software metrics to be implemented in larger organizations. Some possible reasons of this are not related to software at all. For example, companies that are large typically have been around for a while and thus have had more time to implement metrics. However other issues may prevent smaller organizations from implementing a metrics program. These must be dealt with in order to offer small organizations the same sort of knowledge available in larger companies. This means small organizations can plan better, be more accurate in estimating cost, time, and effort, and have predefined ways to measure success including ship deadlines, minimizing number of defects, amongst others.

Yet there are some major issues in implementing a metrics program in a small company. To implement these programs, these issues must be addressed, including stake holder involvement, organizational focus, the overall business environment and competition, and current state or condition of the organization.

Stake Holders

One common roadblock in implementing a metrics program comes well before any data is recorded. Stake holder buy in is crucial in any project and metrics programs are no exception. Karlheinz Kautz discusses this common problem saying developers, “doubted software work was measurable at all, questioned the usefulness of data collection, and feared that bureaucracy would overwhelm their small enterprises.” Here Kautz addresses that from the inception of considering a metrics program, developers were upset. The developers continue to lament, saying the “extra workload and anxiety about the measures being used to control the employees [would be detrimental].”
To combat this, Kautz notes, a comprehensive metrics tracking system is rarely deployed in smaller organizations. Besides the upfront cost of these systems, employees in smaller organizations would be less willing to accept such a mammoth undertaking. Others agree that smaller organizations should be more focused on smaller metrics programs, designed to meet the resources – as well as concerns— that are applicable to these smaller organizations (Rautiainen, Lassenius, Vähäniitty, Pyhäjärvi, & Vanhanen, 2002).

To make an undertaking like a metrics program seem less daunting, breaking it into smaller and more meaningful tasks may be needed, much like the Perkins Nine-Step Metrics Program. It is also much easier to explain the importance of each step and quantify the work needed in smaller sections than in one massive metrics program. Similarly, the concept of measuring everything must be immediately removed from mind. This revelation may be initially hard to sell to management, as an all-encompassing process may be what management wants to hear. Instead, project and organization management must realize that too much information can be just as bad as no information (Augustine & Schroeder, 1999).

In breaking the metrics program down to smaller steps, developers and team members are more likely to see exactly what will be required of them during this new process. Management and leaders are also now aware of the measures needed to be collected to ensure success of a project. Knowing
this information up front will often make the jobs of individuals easier as well as make them more likely
to buy into the project (Colquitt, LePine, & Wesson, 2009).

The problem with stakeholders in this sort of cross-departmental program is that of quantity
and diversity. For the best possible outcome, individuals from multiple areas of the company may be
labeled as stakeholders. This situation occurs because the metrics being measured will not only effect
development teams but also customer service, sales, marketing, and more. Yet, “the variety of
stakeholders and their different areas of expertise propose a challenge: the requirements or the
features to match the requirements that are discussed should be presented in a way that everyone
understands,” (Rautiainen, Lassenius, Vähäniitty, Pyhäjärvi, & Vanhanen, 2002).

This interdepartmental and
organizational understanding of metrics is by no
means an easy task, as seen in Figure 7 -
Visualizing OrgB Risk Ratings. This diagram can be
summarized as a measuring project risk in three
dimensions: number of stakeholders,
technological uncertainties, and complexity of
systems. All three of these measures are evaluated on a Likert scale by three experts, each of which are
represented by a different color line. The overall risk can be considered the size of the triangle that
exists by connecting the three dimensions being evaluated.

Ideally, a small triangle in this figure is a good idea. However that does not mean that only very
few stakeholders should be in a project. As previously mentioned, stakeholders are likely – and need –
to span multiple departments. Yet as more primary stakeholders are added, the overall risk of project
failure increases. So does this mean there is a contradiction? Well possibly in a larger organization. However in smaller organizations, “a single person most likely acts in multiple roles and strategic release management is done by as few as 3-4 People” (Rautiainen, Lassenius, Vähäniitty, Pyhäjärvi, & Vanhanen, 2002). This eliminates much of the risk that large amounts of stakeholders may have in smaller organizations.

Focus

Another key issue facing smaller organizations specifically is focus. This is something much different in larger organizations. For example, describing what Microsoft does as a company in one sentence is pretty difficult. However, smaller organizations tend to be more focused or directed in their goals. This lesser diversification in small companies can be more likened to a specific team within a large organization; teams in large organizations tend to be more specialized and focused.

That being said, there is no one blanket metrics program that makes sense for all small organizations. Kautz discusses this in “Making Sense of Measurement for Small Organizations,” where he studied three small organizations. After working with these small groups, he was hoping to induce a common set of principles in applying metrics programs across small organizations. Immediately he discovered all three organizations had different key objectives and that each company wanted different things from increasing the number of change requests (CRs) being handled, to reducing time to handle CRs, or increased training on development teams.

This diversity in desire is not to say that there is a problem in studying these three very different organizations. If anything, it reinforces that there is a need to identify exactly what a metrics program is meant to handle prior to actually integrating it into the business. This requires an upfront investment to handle the staff involvement and training that is required for a project like this.
Ultimately, Kautz found, there is no one set way of implementing metrics programs, saying, “it is not simply a matter of following predefined checklists and guidelines,” (Kautz, 1999). He continues saying that measuring for the sake of measuring is not a good thing. “Historically reconstructing data, computing lines of code, and assessing average time spent over long intervals can introduce imprecision and inaccuracy. Given these potential gray areas, it is all the more important that we use metrics with care.” Ultimately, the role of metrics programs and assessments must be investigated to get the most out of their implementation inside small companies (Kautz, 1999).

Business Environment

One key aspect that makes small organizations successful is that because of their size, they can be much more adaptive in the market place. This is key in maintaining competition with many of their larger competitors. Obviously, the introduction of this “extra workload” can initially be seen as detrimental to workflows and processes (Kautz, 1999). As a result, in addition to the stakeholder buy in, the process itself must not take too many cycles away from employees that could otherwise be spent in developing the organization’s product.

One way to introduce a metrics program into a small organization without wasting crucial limited resources is the Plan-Do-Check-Act model. It is a model of continuous improvement as it has no end. It is meant for anything from managing whole projects to implementing one small change. The power here is that it adds structure behind tasks that should be done regardless of whether metrics are being collected and analyzed. The purpose of each cycle allows the organization or teams to plan on how a change needs to happen. After planning, the change is tested and analyzed. During “check” the test is
reviewed to see what can be taken away from the process outlined and performed. Lastly in “act,” the correct plan of action can be taken. This will differ whether the test was a success or failure. However the lessons learned can be incorporated into later cycles (Tague, 2004).

Moreover, this cycle can easily be implemented to add continual process improvement within projects and within an organization. It can also be expanded to include a metrics program without much additional overhead. By simply inserting some key measurable criteria in the “plan” section and doing simple analysis on whether those criteria made the expected goals or acceptable ranges in the “check” section, an arguably effective mechanism for implementing a metrics program has been created without much additional overhead.

This approach is not limited to organizations that only follow a waterfall methodology. The normal Plan-Do-Check-Act cycle (also called the Deming Cycle) can be seen as the top cycle in Figure 8. However below that in Figure 8 is the Deming Cycle with a “wheel within a wheel” or a “spiral” that is being introduced into the traditional waterfall methodology (Balanced Scorecard Institute, 1998). This spiral introduction means that the organization can remain highly adaptive to trends and evaluate each step within the “do” section to determine the status and progress of individual changes or developments.

Similarly, this procedure can be inserted into the Agile SCRUM process as well. Since the Agile process consists of several “sprints” within a project, the kickoff meetings for each sprint can contain the metrics for tracking success and progress and the sprint review and retrospectives can contain how the development measured up against these criteria. Since Agile SCRUM has time boxed constraints for all of these meetings and sprints, no additional time is wasted during development in implementing metrics programs. Instead, as is common in Agile, what is not finished is not released in the product and is put into the next sprint (Schwaber, 2004).
Current Condition

One other external factor that must be considered is overall condition or state of the organization. When implementing a new metrics program, an organization may find that a metrics program that is still under development will likely take a back seat if more pressing issues arise in the company. Metrics programs are meant to help the organization long term with more reliable planning horizons, effort calculations, cost calculations, quality, and reliability. However if there is a belief that the organization may not be around at the point where this data can be analyzed for future projects, it is likely not going to be considered.

Organizations that are concerned with more pressing issues like maintaining profitability in a time of low revenue or an organization just starting up are not yet prepared to jump into a metrics program. Churchill and Lewis in their article “The Five Stages of Small Business Growth” dissect this issue.

Figure 9 - Growth Stages of Small Business

(Churchill & Lewis, 1983)

Early in life, small businesses are focused on answering questions about the future existence of the organization. These questions range from, “Are there enough customers?” to “Can the organization deliver products or services to these customers?” and even “Does the cash flow allow for expansion?” This period of reflection then leads to the second stage where the company has answered questions in the previous stage and must now focus on expanding the business. After reaching the success stage, the organization must decide whether it will take its resources and assets and leverage
them for continued growth or instead maintain the current state and instead disconnect from the original founders (Churchill & Lewis, 1983).

In those early pre-success stages, there are often not enough assets on hand to introduce a metrics program, even if it would be ideal or beneficial. The financial resources, personnel resources, systems resources and business resources in conjunction with the owner’s goals and abilities are not yet capable of the effort needed to sustain a metrics program. Instead, it is about the point marked with the vertical dashed line or forward in maturity on Figure 9 - Growth Stages of Small Business where a small business is prepared to introduce a formal program. Here, Disengagement and Growth are at critical points that permit a change in the status quo.

Similarly, this point is the most open time of a small business; that is to say that this is when small businesses are looking to “focus on improvement,” (McCaffery, Taylor, & Coleman, 2007). Because the focus has shifted away from surviving and instead is now centered on thriving, it makes sense that many new ideas will be considered.

Conclusion

By taking into account the information delineated above, a small organization will have a useful set of guidelines to follow when deciding to tackle the task of creating their own software measurement process. Although not simple by means, the activity of establishing such a process will be made less difficult once a small organization knows what factors to consider and how to distinguish itself from its larger peers. This reduction in necessary effort will be greatly appreciated should the organization try to replicate this process to other projects, whether they are related to software or not. With said process in place, the organization can be assured that their procedures are either as efficient as possible or are
in the course of becoming so. This proficiency, while not enough by itself, is essential to have instituted
in order to have the organization find and maintain success.
Works Cited

