Supramolecular fluorescent probes for the detection of mixed alkali metal ions that mimic the function of integrated logic gates

Hao Xu,* Xiaohe Xu,* Reza Dabestani,‡ Gilbert M. Brown,§ Lin Fan,* Stephen Patton* and Hai-Feng Ji*∥

*Chemistry, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA. E-mail: hj@chem.latech.edu; Fax: 01-318-257-3823
‡Oak Ridge National Laboratory, PO Box 2008, MS-6100, Oak Ridge, TN 37831-6100, USA

Received (in Cambridge, UK) 3rd September 2001, Accepted 19th December 2001
First published as an Advance Article on the web 30th January 2002

Two fluorescent probes 1 and 2 are developed that are capable of measuring two different metal ions under basic and acidic conditions, respectively. These probes contain a fluorophore, whose two forms are interconvertible in acidic and basic solutions and have the potential to measure the concentration of each metal ion in a mixture of caesium-potassium or sodium-potassium ions, respectively. Probe molecules 1 and 2 can also be portrayed as logic gates that function as a combination of one AND and one INHIBIT gate.

Introduction

Many researchers are taking steps toward various approaches to make computer-based molecules and molecular-scale components, including quantum arrays, nanoparticles, nanocell, and nanotubes. As the chipmaker is edging closer and closer to fundamental limits on how many transistors and wires can be crammed onto a conventional silicon chip, these molecular devices which are crammed onto a conventional silicon chip, these molecular devices which can also be portrayed as logic gates that function as a combination of one AND and one INHIBIT gate.

Recently, we have designed and synthesized one novel fluorescent probe 1 as shown in Scheme 1. Our results have shown that this molecule can be used to detect caesium ions in acidic conditions, but potassium ions in basic solutions. Based on the same design, we synthesized another probe 2 (Scheme 1). Logically, 2 would be a potassium sensor in basic solutions and a sodium sensor in acidic solutions. In this paper, we report the detailed fluorescence behaviors of both fluorescence probes 1 and 2. The unique fluorescence behaviors of 1 and 2 suggest that another approach for a mixture of dual components sensing is feasible. Furthermore, the fluorescence behaviors of 1 and 2 may be used as an logic AND or INHIBIT gate switched by H+ for nano-computational technology.

Results and discussion

Absorption and fluorescence of 1 and 2 in acidic and basic solutions

The absorption spectra of 2 in basic and acidic solutions are shown in Fig. 1. In basic conditions, addition of K+ slightly

![Fig. 1](path/to/figure1.png)

Fig. 1 The absorption spectra of 2 in methanol solution under basic conditions (a) in the absence and (b) presence of 10⁻¹ mol L⁻¹ K⁺ using benzyltrimethylammonium hydroxide, 1 × 10⁻² M as proton scavenger and under acidic conditions (1 × 10⁻² mol L⁻¹ HCl).
increases the extinction coefficients of 2, but does not alter the fluorescence profile of 2. The absorption spectra of 2 in acidic conditions, however, showed a 3 nm red-shift of the maximum absorption peak of 2 (380 nm) compared with basic solutions (377 nm) with an isosbestic point excitation at 376 nm. This red-shift of absorption observed is attributed to the electrostatic stabilization of the anthracene excited singlet state by the electron-withdrawing ammonium methyl group. The absorption spectra of 1 in acidic and basic solutions are similar to that of 2.

Similar to the absorption spectra of 2, the emission ($\lambda_{\text{ex}} = 376$ nm, isosbestic point excitation in both acidic and basic conditions) peak of 2 (1 × 10^{-6} mol L^{-1}) in MeOH under acidic conditions (429 nm) red-shifts 4 nm compared with basic conditions (425 nm) because of the protonation of the aminomethyl group as shown in Fig. 2 (a and b).

In molecule 2, two receptors are connected with an anthracene molecule. One receptor is benzocrown-5, which is a good host for sodium ions. The other is aza-crown-6, which has the right cavity size for K⁺ complexation. Under basic conditions (using 1 × 10^{-3} mol L^{-1} benzyltrimethylammonium hydroxide as the proton scavenger) in methanol, a weak emission from 2 is observed (curve a in Fig. 2a) owing to quenching of anthracene emission by the aminomethyl moiety in the crown ring A (Scheme 2, $\Delta G \approx -0.1$ eV). Addition of K⁺ ions (1 × 10^{-3} mol L^{-1}), which forms a strong complex with crown ring A, causes a 7.2 fold enhancement in the fluorophore emission (curve b, Fig. 2a). Addition of Na⁺ (1 × 10^{-4} mol L^{-1}, curve c in Fig. 2a), on the other hand, does not alter the fluorescence intensity of 2, suggesting a weak complexation constant between the crown ring A and sodium. It should be mentioned that even though ring B can complex with sodium ions under basic conditions, such complexation does not have any effects on the PET quenching process.

In acidic media, the fluorescence intensity of 2 (in the form of 2-H⁺) in MeOH does not change significantly (curve a, Fig. 2b) even though the nitrogen atom of ring A, an electron donor component that quenches the fluorescence of anthracene, is protonated. This is due to the formation of a new PET fluorophore–receptor pair, in which the emission of anthrylmethylammonium is quenched by the dialkoxybenzene moiety of crown ring B (see Scheme 2). The driving force, ΔG, is calculated to be -0.1 eV (as a comparison, in basic conditions, the E^{red}/H^+ of the fluorophore does not change upon complexation of K⁺ with right-hand ring A, so the K⁺–ring A complexation does not trigger the formation of such a new

Scheme 1 The structures and synthetic routes of 1, 2 and 3.

Scheme 2 The two PET processes in 2 switched by H⁺.
fluorophore–receptor pair). In consequence, the emission of 2-H increases 9.4 fold upon addition of Na+ ions (3 × 10^{-2} mol L^{-1}) (curve c, Fig. 2b), but only 4 fold (curve b, Fig. 2b) upon addition of K+ ions (3 × 10^{-2} mol L^{-1}). When the amine group is protonated, metal ions can no longer bind to the crown ring A because of the electrostatic repulsion between the protonated amine and the positive ion. The observed PET effect upon metal ion complexation under these conditions can thus be attributed to a change in the energetic such that the oxygen lone pair electrons of dialkoxybenzene in crown ring B can no longer fully participate in the PET process causing an enhancement in the emission of the fluorophore molecule (fluorescence turned on). The fluorescence behavior of 1 is similar to that of 2 except that it is Cs+ sensitive in acidic solutions.

Solvent effect on the fluorescence of 2

Since the emission behavior and fluorescence intensity enhancement of 1 and 2 could be influenced by the solvent polarity, the changes in fluorescence intensity (428 nm) of 2 as a function of MeOH composition in CH_{2}Cl_{2}/MeOH solvent mixture in both acidic and basic conditions were investigated and shown in Fig. 3. In basic conditions, the fluorescence intensity of 2 decreases while the ratio of MeOH increases due to the known polarity effect on the electron transfer process. In acidic conditions, the maximum emission intensity for 2 is obtained in the solvent mixture containing 10% methanol in dichloromethane. The observed increase in the emission intensity upon addition of a small amount of methanol to dichloromethane suggests an interaction between methanol and the crown ether–5, which was also observed in the cyananthracene system. The interaction of methanol with the crown ether through hydrogen bonding can suppress the electron transfer process (PET) and enhance the fluorescence intensity of 2. As the ratio of MeOH is increased, the polarity effect on the electron transfer process begins to dominate and results in a decrease in fluorescence intensity. The fluorescence quantum yields of 2 and the maximum quantum yields upon complexation with K+ (in basic conditions) and Na+ (in acidic conditions) are shown in Fig. 4 and the complexation constants of 2 with metal ions in both acidic and basic conditions are listed in Table 1. The reported fluorescence quantum yields were measured relative to 9,10-diphenylanthracene in MeOH (Φ_{fl} = 0.94).

The complexation constants, K, are calculated from the emission intensity profiles using equation (1)

$$I - I_0 = K([M]_0 - [L])\frac{I - I_0}{I_0 - I}$$

where I is the fluorescence intensity of the solution at certain metal ion concentration, I_{0} is the fluorescence intensity of the probe in the absence of metal ions, L is the concentration of probe molecule 2 or 2-H and M represents metal ion concentration.
The complexation constants, K, of 2 with K^+ and 2-H$^+$ with Na$^+$ in different solvents or solvent mixtures (1×10^{-6} mol L$^{-1}$)

<table>
<thead>
<tr>
<th>Solvents</th>
<th>CH$_2$Cl$_2$–MeOH (1 : 1, v/v)</th>
<th>MeOH</th>
<th>MeOH–H$_2$O (1 : 1, v/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{/L}$ mol$^{-1}$ of aza-crown in 2 with K^+</td>
<td>1.2×10^6</td>
<td>6.3×10^5</td>
<td>1.9×10^3</td>
</tr>
<tr>
<td>K of 2-H$^+$ with Na$^+$</td>
<td>1.2×10^5</td>
<td>6.2×10^5</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 The maximum fluorescence quantum yield (Φ) and complexation constants, K, for the complexation of various alkali metal ions by 1 and 1-H$^+$ (1×10^{-4} mol L$^{-1}$) in CH$_2$Cl$_2$. $\lambda_{em} = 376$ nm at the isosbestic point for both 1 and 1-H$^+$. The quantum yields were determined relative to 9,10-diphenanthracene in MeOH, $\Phi_0 = 0.94^{39}$.

<table>
<thead>
<tr>
<th>Metal ion M$^+$</th>
<th>Free</th>
<th>Li$^+$</th>
<th>Na$^+$</th>
<th>K$^+$</th>
<th>Rb$^+$</th>
<th>Cs$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_{max} of 1</td>
<td>0.061</td>
<td>0.064</td>
<td>0.068</td>
<td>0.42</td>
<td>0.32</td>
<td>0.15</td>
</tr>
<tr>
<td>Φ_{max} of 1</td>
<td>0.094</td>
<td>0.086</td>
<td>0.13</td>
<td>7.94 $\times 10^4$</td>
<td>1.29 $\times 10^4$</td>
<td>7.60 $\times 10^2$</td>
</tr>
<tr>
<td>K for 1-H$^+$</td>
<td>--</td>
<td>10</td>
<td>9.1 $\times 10^5$</td>
<td>3.24 $\times 10^4$</td>
<td>1.15 $\times 10^6$</td>
<td>7.08 $\times 10^6$</td>
</tr>
</tbody>
</table>

Table 1 shows that the complexation constants of 2 with metal ions are severely affected by the solvent composition. The complexation of 2 with K$^+$ or Na$^+$ in CH$_2$Cl$_2$–MeOH (1 : 1 v/v) is much stronger than in MeOH. The complexation of 2 with metal ions is weaker in the MeOH–H$_2$O mixture than in MeOH. These results further prove the existence of the interactions between polar protic solvents, such as H$_2$O and MeOH, with crown ether, which would weaken the binding of crown ether with metal ions. However, although the complexation constants of 2 with metal ions are stronger in CH$_2$Cl$_2$–MeOH mixtures than in MeOH, the most significant fluorescence enhancement of 2 upon addition of metal ions are observed in MeOH solution (8.1 fold upon binding with K$^+$ in basic solutions, 9.2 fold upon binding with Na$^+$ in acidic solutions) as shown in Fig. 4. This is because of the relatively lower quantum yields of 2 in MeOH than in CH$_2$Cl$_2$–MeOH mixtures due to the polarity effect but similar maximum fluorescence quantum yields of 2-K$^+$ or 2-Na$^+$ in both MeOH and CH$_2$Cl$_2$–MeOH solutions as shown in Fig. 4.

The pKα of 2 in MeOH–H$_2$O (1 : 1 v/v) was calculated to be 7.8 according to equation (2).$

\log \frac{I_{/max} - I_{/min}}{I_{/max} - I_{/min}} = pH - pK_\alpha$

(2)

Where I_α is the fluorescence intensity of 2 in the solution at a certain pH, $I_{/max}$ is the fluorescence intensity of the unprotonated form of probe 2, and $I_{/max}$ is the fluorescence intensity of the protonated form of probe 2.

Complexation study of 1 and 2 in acidic and basic solutions

The effects of various alkali metal ions concentration on the emission of 2 in a basic media are shown in Fig. 5a. Both Li$^+$ and Na$^+$ ions show no effect on the emission behavior of 2 and the most dramatic enhancement under these conditions is observed for K$^+$ ions with the onset at 10^{-3} M. Although both crown rings A and B present in 2 can bind alkali metal ions, the fact that emission is quenched by the free amine group present in ring 1 (under neutral or basic conditions) suggests that the observed enhancement is due to complexation of ions with this ring disabling nitrogen lone pair electrons from participation in the PET process. This is consistent with the reported results for a derivative of aza-18-crown-6, which acts as a good K$^+$ receptor.38,39

The change in emission behavior of 2 in MeOH under acidic conditions (1×10^{-3} M of HCl) as a function of alkali metal ion concentration is shown in Fig. 5b. It is shown that addition of Li$^+$ and Cs$^+$ (ions to 10^{-2} mol L$^{-1}$ concentration) to 2-H$^+$ solution slightly increases the emission intensity while K$^+$ and Rb$^+$ ions induce a reasonable enhancement in the emission. The most dramatic enhancement in the emission behavior of 2-H$^+$ is observed for Na$^+$ ions with the onset at 10^{-5} mol L$^{-1}$ concentration of this ion. Similarly, the fluorescence behaviors of 1 suggest that 1 is Cs$^+$ sensitive in acidic solution and K$^+$ sensitive in basic solutions. Tables 2 and 3 list the maximum fluorescence quantum yields for 1 and 2 when complexed with different alkali metal ions under basic and acidic conditions.
The complexation constants, K, for ring A of 2 and ring B of 2-H^+ with alkalai metal ions can be calculated from the emission intensity profiles shown in Figs 5a and 5b using equation (1) and the figure reported before for I. The complexation constants (K) reported in Tables 2 and 3 were calculated using a non-linear curve-fitting method for equation (1) to fit the observed experimental emission data. These data clearly show that under basic conditions (where crown ring B is passive and makes no contribution to PET) alkalai metal ion binding to crown ring A in 2 results in the observed changes in the fluorophore emission by PET in the following order $K^+ > Rb^+ > Cs^+ > Na^+$. The role of ring B in the PET process is pronounced at different pHs. In general, a PET sensor consists of a guest binding site as the receptor and a photointeraction site (fluorophore) for signal transduction. In our system, the two forms di-

Further studies on the changes in the fluorescence intensities of 1 and 2 were conducted in MeOH solutions containing mixtures of different concentration of Cs^+ and K^+, or Na^+ and K^+, respectively, at two pH conditions (acidic and basic conditions). The results are shown as three-dimensional maps in Figs. 6 and 7. For example, in basic solution (Fig. 6a), the fluorescence enhancement region of 1 takes place at $[K^+] = 1 \times 10^{-5} \text{ mol L}^{-1}$ in the absence or presence of low concentration of Cs^+. However, although the complexation constant for ring I of 1 with Cs^+ is low, higher concentrations of Cs^+ could competitively complex with ring I of 1. Consequently, a higher concentration of K^+ is required to replace or compete with Cs^+ to fully complex with ring I of 1. At high concentration of Cs^+ (e.g. $3 \times 10^{-2} \text{ mol L}^{-1}$), the fluorescence enhancement region of 1 is shifted to when $[K^+] = 1 \times 10^{-2} \text{ mol L}^{-1}$ in acidic solution (Fig. 6b). The fluorescence behaviors of 1 or 2 in a solution containing a mixture of metal ions are different from that with only one metal ion present. For instance, when a mixture containing $5 \times 10^{-3} \text{ mol L}^{-1} Na^+$ and $1 \times 10^{-3} \text{ mol L}^{-1} K^+$ is used, an eight-fold enhancement in the fluorescence intensity

Table 3 The maximum fluorescence quantum yield (Φ) and complexation constants, K, for the complexation of various alkalai metal ions by 2 and 2-H^+ ($1 \times 10^{-6} \text{ mol L}^{-1}$) in CH$_2$OH. λ_{em} = 376 nm at the isosbestic point for both 2 and 2-H^+. The quantum yields were determined relative to 9,10-diphenylanthracene in MeOH, $\Phi_0 = 0.94^{10}$.

<table>
<thead>
<tr>
<th>Metal ion M$^+$</th>
<th>Free</th>
<th>Li$^+$</th>
<th>Na$^+$</th>
<th>K$^+$</th>
<th>Rb$^+$</th>
<th>Cs$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_{em} of 2</td>
<td>0.048</td>
<td>0.060</td>
<td>0.053</td>
<td>0.39</td>
<td>0.31</td>
<td>0.12</td>
</tr>
<tr>
<td>K of aza-crown in 2 with ions</td>
<td>10</td>
<td>7.4 \times 102</td>
<td>6.3 \times 104</td>
<td>1.26 \times 104</td>
<td>2.82 \times 104</td>
<td></td>
</tr>
<tr>
<td>Φ_{em} of 2-H^+</td>
<td>0.060</td>
<td>0.098</td>
<td>0.55</td>
<td>0.26</td>
<td>0.22</td>
<td>0.15</td>
</tr>
<tr>
<td>K of 2-H^+</td>
<td>–</td>
<td>6.2 \times 102</td>
<td>6.0 \times 102</td>
<td>3.9 \times 102</td>
<td>1.5 \times 102</td>
<td></td>
</tr>
</tbody>
</table>

The quantum yields were determined relative to 9,10-diphenylanthracene in MeOH, $\Phi_0 = 0.94^{10}$.
of 2 is observed in both acidic and basic media. However, in a solution that contains only 5×10^{-3} mol L$^{-1}$ Na$^+$, and no K$^+$, 2 shows an eight-fold fluorescence enhancement in acidic solution, and no fluorescence increase in basic solution. On the other hand, in a solution that contains only 1×10^{-4} mol L$^{-1}$ of K$^+$, and no Na$^+$, 2 shows an eight-fold fluorescence enhancement, but no fluorescence increase in an acidic media. By data analysis of the fluorescence intensities of 2 determined in both acidic and basic solutions, the concentrations of both K$^+$ and Na$^+$ could be determined simultaneously.

The fluorescence behavior of 3 in basic and acidic conditions

Compound 3 was also synthesized based on the same design described above as a useful supplementation. It is known that both benzo-18-crown-6 and aza-18-crown-6 are K$^+$ receptors, but their complexation constants with K$^+$ are different. Based on our above discussion, the K$^+$ detection range of 3 under basic or acidic conditions would be different. Our results show that these expectations are realized as shown in Fig. 8. In basic solution, the fluorescence enhancement region of 3 takes place at [K$^+$] = 1×10^{-6}–3×10^{-3} mol L$^{-1}$, while in the acidic solution, the fluorescence enhancement region of 3 takes place at [K$^+$] = 1×10^{-2}–1×10^{-1} mol L$^{-1}$. The complexation constants of 3 with K$^+$ are calculated to be 5.3×10^4 and 2.2×10^5 L mol$^{-1}$, in basic and acidic conditions, respectively. Overall, compound 3 can be used to measure the K$^+$ concentration from 1×10^{-2} mol L$^{-1}$ to 3×10^{-4} mol L$^{-1}$, which is broader than a single fluorescent probe containing only aza-18-crown-6 or benzo-18-crown-6 receptor.

Logic gates

Molecules 1 and 2 also exhibit an unique logic gate system that combines an AND gate and an INHIBIT gate as described in Fig. 9 by two representations. For example, 2 combines an AND gate and an INHIBIT gate with the input notations IN$_1$, IN$_2$, and IN$_3$ signifying presence (1) or absence (0) of potassium ion (K$^+$), proton (H$^+$), and sodium ion (Na$^+$) in solution. Notation OUT refers to fluorescence of 2 being on (1) or off (0). The truth table shown in the inset of Fig. 9 was constructed based on the fluorescence data in MeOH (Fig. 2) and the scheme depicted in Scheme 2 to demonstrate the logic gating behavior of 2. The emission of 2 is on in the presence of both Na$^+$ and H$^+$, or in the presence of K$^+$ and absence with H$^+$, H$^+$ acts as a switch in this unique logic system. However, a defect exists for 2 as shown in Fig. 2, in acidic conditions, the fluorescence intensity of 2 increases by a factor of 4.3 when 10^{-2} mol L$^{-1}$ of sodium are present, but also increases by a factor of 4.3 when 10^{-2} mol L$^{-1}$ of K$^+$ are present. It would be a better such combined logic system based on the fluorescence data in Fig. 6 when 2×10^{-6} mol L$^{-1}$ of Cs$^+$ and K$^+$ are used. In acidic conditions, addition of 2×10^{-6} mol L$^{-1}$ of Cs$^+$ increases the fluorescence intensity of 1 by a factor of 3.4, but no fluorescence intensity change of 1 is observed upon addition of 2×10^{-6} mol L$^{-1}$ of K$^+$.

Experimental

Instrumentation

1H NMR spectra were obtained in chloroform-d on a 400 MHz Bruker spectrometer. Fluorescence spectra were measured with
a Spex fluorolog 2 or a Hitachi F-4010 spectrophotometer. UV-absorption spectra were obtained on a Shimadzu UV-2401PC spectrophotometer. Matrix assisted laser desorption/ ionization-Fourier transform ion cyclotron resonance is presented by the acronym MALDI-FTICR. Mass spectra were acquired on a Finnigan MAT 2021 Fourier transform ion cyclotron resonance mass spectrometer equipped with a nitrogen laser (337 nm, Laser Photronics).

Materials

Benzyltrimethylammonium hydroxide (Aldrich), caesium acetate (Aldrich, 99.9%), rubidium acetate (Aldrich, 99.9%), potassium acetate (99.9%), p-H-calix[4]arene (Aldrich) were used as received, 25,27-bis(2-propoxy)-26,28-dihydroxy-p-H-calix[4]arene (5) was synthesized according to a method described in the literature. Methylen chloride (Merck, 99.9%), methanol (Merck, HPLC grade), benzene (Merck, GR grade), hexane (Merck, GR grade), sodium acetate (Fisher, 100%), lithium acetate (Alfa, GR grade) were all used as received.

Syntheses

1,2-Bis(5-iodo-3-oxa-1-pentyloxy)-4-(10-hydroxymethyl-9-anthrylmethyl)benzene (4). Compound 4 was synthesized using the previously reported procedure.16

1,3-Alternate 25.27-bis(2-propoxy)-26,28-[4-(10-hydroxymethyl-9-anthrylmethyl)-1,2-phenylenebis(5-dioxy-3-oxapentyl)]calix[4]arene (6). Compound 6 was synthesized according to a procedure described before. A mixture of 0.20 g (0.39 mmol) of 25,27-bis(2-propoxy)-26,28-dihydroxycalix[4]arene (5), 0.29 g (0.4 mmol) of 1,2-bis(5-iodo-3-oxa-1-pentyloxy)-4-(10-hydroxymethyl-9-anthrylmethyl)benzene and 1.63 g (5 mmol) of Cs₂CO₃, in 100 ml acetonitrile was refluxed with stirring for 3 days. After cooling to room temperature, the solvents were removed under reduced pressure. The residue was extracted with CHCl₃ and washed with 2 M HCl, NaC1 solution, and water respectively. The CHCl₃ layer was dried using anhydrous Na₂SO₄, and the solution was concentrated under reduced pressure. The mixture was purified by flash chromatography giving 0.28 g (70% yield) of a yellow powder, Cs₂H₂PO₄ requires (C, 78.50%; H, 6.79%; O, 14.70%), found: C, 78.14%; H, 6.45%; O, 15.03%; H NMR (CDCl₃), δ 8.50 (d., 2H, Ar), 8.32 (d, 2H, Ar), 7.56 (m, 4H, OCH₂), 7.47 (m, 1H, Bz), 5.70 (s, 2H, ArCH₂O), 5.09 (s, 2H, ArCH₂Br), 4.22 (m, 2H, OCH₂), 4.07–3.28 (m, 24H, CH₂), 0.94 (d, 12H, CH₃).

1,3-Alternate 25.27-bis(isopropoxy)-26,28-[4-(10-bromomethyl-9-anthrylmethyl)-1,2-phenylenebis(5-dioxy-3-oxapentyl)]calix[4]arene (7). 0.2 g of 25,27-bis(2-propoxy)-26,28-[4-(10-hydroxymethyl-9-anthrylmethyl)-1,2-phenylenebis(5-dioxy-3-oxapentyl)]calix[4]arene and 1 g of PbBr₂ were mixed in dry methylene chloride (30 ml) and a solution of 52.4 mg (0.2 mmol) of 1-aza-18-crown-6 in benzene (15 ml) was added. The solution was refluxed for 12 h. After the solution cooled to room temperature, the solvent was evaporated and the product was purified by flash chromatography using methylene chloride–acetonitrile (1:1 volume) as eluant to afford 0.13 g yellow powder (76%). Mp 110 °C. C₂H₂NO₃ requires (C, 74.55%; H, 7.35%; O, 16.99%), found: C, 74.74%; H, 6.97%; O, 17.09%; 1H NMR (CDCl₃), δ 8.62 (d, 2H, Ar), 8.28 (d, 2H, Ar), 7.55–7.40 (m, 4H, Ar), 7.10–6.56 (m, 15H, Bz), 4.96 (s, 2H, ArCH₂Br), 4.65 (s, 2H, ArCH₂N), 4.25 (m, 2H, OCH₂), 4.10–2.86 (m, 48H, OCH₂), 0.94 (d, 12H, CH₂). Molecular weight was determined by MALDI and gave m/z M⁺ 1224.3, calculated m/z 1224.5.

2,3,5,6,8,9,11,12-Octahydro-15-[10-(bromomethyl)-9-anthrylmethyl]-1,4,7,10,13-benzopentaoxacyclopentadecin (7). Compound 7 was synthesized following the literature procedure.19

2,3,5,6,8,9,11,12-Octahydro-15-[10-[1-aza-4,7,10,13,16-pentaaxcyclooctadecanemethyl]-9-anthrylmethyl]-1,4,7,10,13-benzopentaoxacyclopentadecin (2). 0.22 g (0.4 mmol) of 25,27-bis(isopropoxy)-26,28-[4-(10-bromomethyl)-9-anthrylmethyl]-1,4,7,10,13-benzopentaoxacyclopentadecin was dissolved in benzene 30 ml and a solution of 1-aza-18-crown-6 (0.104 g, 0.4 mmol) in benzene (15 ml) was added to it. The solution was refluxed for 12 h. After the solution cooled to room temperature, the solvent was evaporated and the product was purified by flash chromatography using methylene chloride–acetone (1:1 volume) as eluant to afford 0.23 g of a yellow sticky oil (79% yield). C₂H₂NO₄ requires (C, 68.74%; H, 7.55%; N, 1.91%, O, 21.8%), found: C, 68.24%; H, 7.45%; O, 22.09%; 1H NMR (CDCl₃), δ 8.60 (d, 2H, Ar), 8.27 (d, 2H, Ar), 7.52–7.38 (m, 4H, Ar), 6.80–6.54 (m, 3H, Bz), 4.90 (s, 2H, BzCH₂Ar), 4.53 (s, 2H, ArCH₂N), 3.92–2.66 (m, 40H, OCH₂). MS, m/z M⁺ 734, calculated m/z 733.89.

2,3,5,6,8,9,11,12,14,15-Decahydro-18-[1-aza-4,7,10,13,16-pentaaxcyclooctadecanemethyl]-9-anthrylmethyl]-1,4,7,10,13,16-benzohexaoxacyclohexadecin (3). Compound 3 was synthesized based on the same procedure described above for 2 with a total of 12% yield starting with benzo-18-crown-6 instead of benzo-15-crown-5. C₂H₂NO₄ requires (C, 67.93%; H, 7.64%; N, 1.80%, O, 22.62%), found: C, 66.94%; H, 7.76%; O, 23.24%; 1H NMR (CDCl₃), δ 8.62 (d, 2H, Ar), 8.26 (d, 2H, Ar), 7.55–7.37 (m, 4H, Ar), 6.83–6.53 (m, 3H, Bz), 4.94 (s, 2H, BzCH₂Ar), 4.56 (s, 2H, ArCH₂N), 3.96–2.61 (m, 44H, OCH₂). MS, m/z M⁺ 778, calculated m/z 777.95.

Acknowledgements

This work was supported in part by the Louisiana Board of Regents through the Board of Regents Support Fund under contract number LEQSF(2001-04)-RD-A-16. H.-F. J., R. D. and G. M. B. acknowledge the Environmental Management Science Program, Office of Environmental Management, US Department of Energy for financial support of this work. Oak Ridge National Laboratory is operated and managed by UT-Battelle, LLC for the US Department of Energy under contract DE-AC05-00OR22725.

References

