Introduction to Control Systems

MEM 355 Performance Enhancement of Dynamical Systems

Harry G. Kwatny
Department of Mechanical Engineering & Mechanics
Drexel University
Outline

• Course practical information
• Control: open loop and closed loop
• Short history of control
• Contemporary applications
• Technology drivers
• Summary

What is the course content? What is control?
Why should an ME care? Why all the math?
Practical Information

- Lectures: Tues & Thurs 3:30-4:50 pm
- URL: http://www.pages.drexel.edu/~hgk22/

Grading:
- Homework (4): 20%
- Exam 1 (in class): 25%
- Exam 2 (in class): 25%
- Project (take home): 30%
What you should know going in

• Basics of Laplace transform
• Concepts of state space and transfer function models of a linear system.
• The meaning of poles & zeros
• The frequency transfer function and Bode Plots
• Block diagram manipulation
• Eigenvalues & eigenvectors, modal analysis and similarity transformations.
• Stability and Routh table.
• Basic ability to use MATLAB.
What you should know going out

• Understand why automatic control is useful for a mechanical engineer
• Recognize the value of integrated control and process design
• Understand the key concepts of control system design
• Be able to solve simple control problems
• Recognize difficult control problems
• Know relevant mathematical theory
• Have competence in using computational tools
Specific Goals

- Define the control system design problem and develop a preliminary appreciation of the tradeoffs involved and requirements for robust stability and performance.
- Develop concepts and tools for ultimate state error analysis.
- Develop the relationship between time domain and frequency domain performance specifications, e.g., rise time, overshoot, settling time, sensitivity function and bandwidth.
- Develop frequency domain design methods, including: the root locus method, Nyquist & Bode methods, and stability margins.
- Provide an introduction to state space design: controllability and observability, pole placement, design via the separation principle (time permitting).
- Emphasize computational methods using MATLAB.
What is Control?

- Control refers to the manipulation of the inputs to a physical system in order to cause desirable behavior.
 - Cause output variables to track desired values
 - Impose desirable dynamical behavior, e.g., stabilize an unstable system

- Open loop (feedforward) control
 - Exploit knowledge of system behavior to compute necessary inputs
 - Requires accurate model of system

- Closed loop (feedback, active) control
 - Process information from sensors to derive appropriate inputs
 - Allows compensation for model uncertainty, disturbances, noise
 - Alters system dynamics
Familiar Examples

• Household Temperature Control
• Cruise Control +
• Traction Control
• Electronic Stabilization
• Airplane Autopilot
What do Control Engineers Do?

• System Design/System Integration
 • Participate in defining system/subsystem requirements and specifications
 • Develop subsystem/component specifications – including cyberstructure
 • Participate in component selection/design
 • Develop math models and simulations of components/subsystems/system
 • Design/implement control systems
 • Participate in testing/validation/verification
Open & Closed Loop Control

Control computer

Feedforward does not alter plant dynamics. Feedback does.
The Magic of Feedback

- The adjustment of system inputs based on the observation of its outputs
- Feedback is a universal strategy to cope with uncertainty

In engineering we use feedback to:

- Cause a system to behave as desired
- Keep variables constant
- Stabilize unstable system
- Reduce effects of disturbances
- Minimize the effect of component variations
- Another alternative for designers
Origins of Control Engineering

Clocks (escapement) 1200-1400
Windmills 1787
Steam Engines (Watt) 1788
Maxwell ~ Governors 1868
Water Turbines 1893
Wright brothers ~ Airplane 1903
Sperry ~ Autopilot (Gyro) 1914
Minorsky ~ Ship steering 1922
Black ~ Feedback amplifier 1928
Ivanoff ~ Temperature regulation 1934

First real control system analysis.
First journal article.
Invention of new control paradigm.
“We know how to construct airplanes. Men also know how to build engines. The inability to balance and steer still confronts students of the flying problem. When this one feature has been worked out, the age of flying will have arrived, for all other difficulties are of minor importance.”

Wilber Wright 1901
Contemporary Applications

Widespread use of automatic control in many fields

- Power generation
- Power transmission
- Process control
- Discrete manufacturing
- Robotics
- Communications
- Automotive
- Buildings
- Aerospace

- Medicine
- Marine Engineering
- Computers
- Instrumentation
- Mechatronics
- Materials
- Physics
- Biology
- Economics

There is a unified framework of theory, design methods and computer tools that cut across fields of application.
Examples

• Flight control systems
 • Commercial & military “fly-by-wire”
 • Autopilot, auto-landing
 • UAV

• Robotics
 • Precision positioning in manufacturing
 • Remote space/sea environments
 • Minimally-invasive surgery
 • RPV’s for surveillance, search and rescue

• Automotive
 • Engine
 • Transmission
 • Cruise, climate control
 • ABS, Traction control, ESP
 • Active suspension
 • Self driving

• Power plants
 • Various temps/pressures
 • Power output
 • Emissions control

• Heating, ventilation, air conditioning (HVAC)
Examples

• Materials processing
 • Rapid thermal processing
 • Vapor deposition
• Noise and vibration control
 • Active mounts
 • Speaker systems
• Intelligent vehicle highway systems
 • ‘platooning’ for high speed, high density travel
 • Automatic merge
 • Obstacle avoidance
 • Lane Following
 • Long haul fuel optimization

• Smart engines
 • Compression systems stall, surge, flutter control
 • Combustion systems lean air/fuel ratio for low emissions, improved efficiency

GE 7000
Evolution of the Control Discipline

<table>
<thead>
<tr>
<th>Era</th>
<th>Key Characteristics</th>
</tr>
</thead>
</table>
| **Classical control** 1940 | - Frequency-domain based tools for linear systems
- Mainly useful for single-input single-output (SISO) systems
- WWII years saw 1st application of ‘optimal’ control
- Still the main tools used in practice |
| **Modern control** 1960 | - ‘State space’ approach for linear systems
- Useful for SISO and multi-input multi-output (MIMO) systems
- Relies on linear algebra computations rather than Laplace transform
- Performance and robustness measures not always explicit
- Just in time for space exploration |
| **Optimal control** 1970 | - Find the input that optimizes some objective function (e.g., min fuel, min time)
- Used for both open loop and closed loop design |
| **Robust control** 1980 | - Generalizes classical control to MIMO case
- Enabled by modern control development |
| **Nonlinear, adaptive, hybrid ...** 1990 | - Geometric theory of affine systems, variable structure
- Self-tuning and adaptive control |
| **Discrete Event & Hybrid Systems** 2000+ | - Mixed Logic-Dynamical Systems |
Key Technology Trends

- **Computation/microprocessors**
 - Cheap and powerful microprocessors opened the door to widespread control applications from 1970’s onward

- **Sensors and actuators**
 - Sensors continue to get smaller, cheaper, faster
 - Macro/micro – scale actuation evolving (power electronics, piezo-electric, EM-rheological fluids)

- **Communications and networking**
 - Networks replacing point-to-point communication in large systems (e.g., electric power systems) and small (e.g. automotive)
Active Control in Automobiles

A typical automobile has 200-300 feedback controllers. Here are a few examples in a contemporary Mercedes.

- Cruise Control
- ABC-active body control
- ABS-anti-lock braking system
- ASR acceleration skid control
- ESP electronic stabilization program
- SBC sensotronic brake control
- BAS brake assist system
- Proximity controlled cruising

http://www.mercedes-benz.com/e/innovation/rd/sicherheitspecial/default.htm
The Mercedes A-class

Automatic control gives extra freedom to the designer

Unstable behavior improved by Electronic Stabilization Program (ESP)

Now standard on virtually all new vehicles
Mercedes Benz Electronic Stabilization Package

ESP helps to correct understeer (plowing) by braking the inside rear wheel.
Active Body Control

- ABC continuously matches the stiffness and damping characteristics to current driving conditions.
- It is possible, for example, to compensate for the rolling motion of the body when taking a bend in the road.
- Hydraulic cylinders in series with the coil springs, generate forces that counteract wheel load. This is performed with sensors that measure yaw rate, longitudinal and transverse acceleration, vertical acceleration.
Biology/Biomechanics

• Feedback governs how we grow, respond to stress and challenge.
• Feedback regulates factors such as body temperature, blood pressure, and cholesterol level.
• Feedback makes it possible for us to stand upright.
• Feedback enables locomotion.
• Feedback operates at every level, from the interaction of proteins in cells to the interaction of organisms in complex ecologies.
• Feedback control is used to design drug treatment strategies for diseases like HIV/AIDS, Cancer

“Biologically inspired control”
Research Applications in MEM

- Automotive
- Aircraft/Flight Safety
- Power Plants
- Robotics
- Autonomous Vehicles
- Mechatronics
- Biology/Biomechanics
- Electric Power Systems (terrestrial, automotive, ship)
State Space & Transfer Function Models

State Space

\[\dot{x} = Ax + Bu \]
\[y = Cx + Du \]

State space models are also referred to as time-domain models.

Transfer Function

\[Y(s) = G(s)U(s) \]
\[G(s) = C[sI - A]^{-1}B + D \]
\[Y(s) = L[y(t)] \]
\[U(s) = L[u(t)] \]

Transfer function models are also referred to as frequency domain models.
Summary

• Course content.
• What is a control system?
 • Open loop/closed loop (feedforward/feedback)
• Why is control relevant to ME?
 • Applications! Applications! Applications!
• Why so much math?
 • Abstraction to accommodate many applications in a common framework
 • Explicit design approaches to meet (optimize) specific performance goals.