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Abstract 

The objective of this paper is to identify the dynamic structure of several time-dependent discipline-level 
citation networks through a path-based method. A network data set is prepared that comprises 27 subjects 
and their citations aggregated from more than 27,000 journals and proceedings indexed in the Scopus 
database. A maximum spanning tree method is employed to extract paths in the weighted, directed, and 
cyclic networks. This paper finds that subjects such as Medicine, Biochemistry, Chemistry, Materials 
Science, Physics, and Social Sciences are the ones with multiple branches in the spanning tree. This paper 
also finds that most paths connect science, technology, engineering, and mathematics (STEM) fields; two 
critical paths connecting STEM and non-STEM fields are the one from Mathematics to Decision Sciences 
and the one from Medicine to Social Sciences.  

Introduction 

The creation and diffusion of knowledge is not dependent on a single unit. Knowledge is diffused, 
circulated, and utilized among various social sectors and individuals (Yan, 2014). In the past few decades, 
geographical, institutional, and disciplinary barriers that once confined knowledge flows are increasingly 
becoming permeable. Scholars demonstrated that our society has transformed from a production-based 
one to a knowledge-based oneor the so called knowledge societies (e.g., Knorr-Cetina, 1999) where 
knowledge has become the “heart of economic growth” (David & Foray, 2002, p. 9). It is thus of great 
importance to reexamine and understand patterns of knowledge flows in this new era.  

Prior quantitative studies of knowledge have largely employed instruments such as citations, co-citations, 
and coauthorship relations. Perhaps, the groundbreaking work was Jaffe, Trajtenberg and Henderson’s 
(1993) investigation of knowledge spillovers through patent citationsin particular the proximity theory 
was introduced to interpret the distribution of patent citations. Studies have found that physical, 
institutional, cognitive, technological, and geographic proximities are all associated with the knowledge 
diffusion in organizations (Jaffe & Trajtenberg, 1999; MacGarvie, 2005; Autant-Bernard, Mairesse, & 
Massard, 2007), among which geographic proximity serves as a leading factor followed by institutional 
proximity, as noted by Ponds, Frenken and Van Oort (2007). Cognitive proximity was examined through 
citation and co-keyword relations (Buter, Noyons, & Van Raan, 2010) in that both types of relations have 
accurately detected converging research areas in science. In terms of paper citations, Lewison, Rippon, 
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and Wooding (2005) found that citing papers in the biomedical field are progressively becoming more 
international and the fine line between basic and clinical research is diminishing. Using a more extensive 
data set that comprised all major scientific fields, Wagner and Leydesdorff (2005) revealed that the 
international coauthorship network is a self-organizing network guided by the principle of preferential 
attachment.  

In addition to the proximity theory, another influential approach to understand knowledge diffusion is the 
epidemic models. These models can be seen as a particular case of population dynamics models (Vitanov 
& Ausloos, 2012). They were used to study the transmission of infectious diseases and have been adopted 
to study the dissemination of knowledge. Actors in the models can be represented by one of the following 
classes: susceptible (S), exposed (E), infected (I), skeptical (Z), and recovered (R). It is found that the 
SEIZ combination has the best fit with empirical data for a case study on the Feynman diagram (Hethcote, 
2000). Another case study using the SI and SEI combinations found that the diffusion of publications on 
kinesin research was more likely to occur between disciplines with existing knowledge flows (Kiss et al., 
2010). Other statistical methods that model knowledge diffusion, as noted by Geroski (2000), include the 
probit model which posits that the knowledge adoption rate is dependent with types of organizations and 
the ecologic model which is predicated upon the “twin forces of legitimation and competition” (p. 603).  

Apart from these efforts, qualitative studies have been pursued to capture more nuanced social processes 
that shape knowledge transfer, particularly in relation to human capital―collaboration (e.g., Singh, 2005; 
Wuchty, Jones, & Uzzi, 2007), the mobility of employees (e.g., Almeida & Kogut, 1999; Cohen, Nelson 
& Walsh, 2002), and the formation of knowledge-based communities (e.g., David & Foray, 2002) have 
profoundly changed the production and diffusion of knowledge. For instance, Cohen, helson, and Walsh 
(2002) confirmed several knowledge transfer channels including conference contacts, mobility of 
researchers, mentorship and collaboration relationships, and virtual scholarly communication channels 
(e.g., publications and patens). Moreover, barriers to knowledge transfer were discovered (Szulanski, 
1996; Almeida & Kogut, 1999) in that issues such as insufficient absorptive capacity, ambiguity, and 
inter-personal tensions are all contributing factors.  

In regards to scientific knowledge, research fields are typically chosen as the unit of analysis. One thread 
of research has primarily focused on using co-occurrence data to map scientific fields and portray 
academic landscape, such as the consensus map (Klavans & Boyack, 2009), map of science (Börner et al., 
2012), the overlay maps (Rafols, Porter, & Leydesdorff, 2010; Chen & Leydesdorff, 2014), and the global 
science map (Leydesdorff & Rafols, 2009). Yet, these co-occurrence-based maps are not effective in 
depicting knowledge diffusion patterns because these patterns relate to direct relations in nature. Another 
thread has used citations as the proxy to examine knowledge diffusion, with the notion that knowledge 
flows from the cited entity to the citing entity. In this vein of research, prior work used paper and patent 
citation data and explored knowledge flows across geographic locations (e.g., Jaffe, Trajtenberg, & 
Henderson, 1993), across disciplines (Van Leeuwen & Tijssen, 2000; Yan, Ding, Cronin, & Leydesdorff, 
2013; Yan, 2014), among industries and organizations (e.g., Bacchiocchi & Montobbio, 2007), among 
academic institutions (Börner, Penumarthy, Meiss, & Ke, 2006), and between papers and patents (Narin, 
Hamilton, & Olivastro, 1997; Chen & Hicks, 2004).  

An effective way to interpret these citation-based studies is through the trading metaphor. It makes 
analogies to international trade in that a discipline is a trading unit and can export knowledge via 



incoming citations and import knowledge via outgoing citations (Yan et al., 2013). Using this metaphor, 
patterns of knowledge flows in information and library science (Cronin & Davenport, 1989; Cronin & 
Pearson, 1990; Larivière, Sugimoto & Cronin, 2012), statistics and probability (Stigler, 1994), 
management science (Lockett & McWilliams, 2005), and all disciplines in sciences and social sciences 
(Yan et al., 2013; Yan, 2014) were examined. These studies found that while some disciplines tended to 
become knowledge exporters and enjoyed knowledge surplus, other disciplines tended to become 
knowledge importers and experienced knowledge deficit (e.g., Yan et al., 2013).  

By surveying these studies, it is found that the focus was primarily on the actors but not on knowledge 
paths. Furthermore, most studies pertained to case studies of specified topics and an aggregated overview 
of disciplinary knowledge flows is lacking from the literature. To fill the gap, this study employs the 
maximum spanning tree (MST) approach to identify discipline-level knowledge paths in weighted, 
directed, and cyclic networks. This approach, when applied to a 15-year citation data set awarded by 
Elsevier, identifies the dynamic patterns of paths in the spanning trees. Results from this study will 
provide quantitative evidences to support succeeding studies on disciplinary knowledge flows.  

Data and methods 

Data 

The data set was awarded by the Elsevier Bibliometrics Research Program2. The intermediary data file 
was a journal-to-journal citation matrix for all journals and proceedings indexed in the Scopus database 
with a two-year citation window; that is, citations in year t to papers published in year t-2. Data on the 
following cited/citing years were therefore obtained: 1997/1999, 2000/2002, 2003/2005, 2006/2008, and 
2009/2011. Using Scopus’s own journal classification schema―All Science Classification Codes 
(ASJC)―journal-to-journal citation data were aggregated into the subject area level. These 27 subject 
areas were used as the unit of analysis. Journal multi-assignment at the subject area level was considered 
(i.e., if journal j1 cited journal j2 n times and j1 was assigned to subject s1 and j2 was assigned to subject 
s2 and s3, then there are two citation links: one from s1 to s2 and one from s1 to s3 both with the weight n). 
The numbers of journals and citations for each ASJC major subject area are shown in Table 1 (C: the 
number of citations; J: the number of journals). 

Table 1. Numbers of journals and incoming citations for ASJC major subject areas 

 Subjects  1997/1999 2000/2002 2003/2005 2006/2008 2009/2011 

1 General 
C 143,556 150,304 157,982 146,292 156,696 

J 59 57 83 98 119 

2 Agricultural and Biological Sciences 
C 176,256 214,660 281,348 333,983 374,719 

J 1,146 1,207 1,299 1,547 1,564 

3 Arts and Humanities 
C 7,962 8,712 12,044 13,794 15,422 

J 656 984 1,376 1,565 1,726 

4 Biochemistry 
C 876,618 1,015,893 1,215,847 1,243,889 1,245,863 

J 1,177 1,319 1,405 1,567 1,558 
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5 Business, Management and Accounting 
C 14,927 20,195 29,042 40,856 51,430 

J 447 485 674 809 843 

6 Chemical Engineering 
C 116,588 156,354 248,566 335,412 433,887 

J 409 457 491 486 461 

7 Chemistry 
C 347,299 469,693 646,849 820,491 979,918 

J 632 674 718 738 729 

8 Computer Science 
C 40,259 68,180 129,370 158,545 200,468 

J 729 807 973 1,108 1,137 

9 Decision Sciences 
C 9,049 11,192 17,054 25,813 34,237 

J 136 149 177 212 222 

10 Earth and Planetary Sciences 
C 81,379 105,332 135,888 155,351 187,988 

J 788 770 860 909 867 

11 Economics, Econometrics and Finance 
C 15,012 17,261 23,921 32,443 41,509 

J 318 362 471 613 631 

12 Energy 
C 21,689 29,736 41,576 62,057 104,625 

J 205 241 286 291 291 

13 Engineering 
C 151,549 218,990 336,940 430,236 561,513 

J 1,558 1,674 1,992 2,008 1,934 

14 Environmental Science 
C 96,460 123,889 165,832 219,992 300,113 

J 786 799 877 976 999 

15 Immunology and Microbiology 
C 210,042 240,597 280,186 289,386 289,270 

J 359 371 384 415 404 

16 Materials Science 
C 211,113 281,410 408,557 521,863 614,036 

J 748 807 926 924 896 

17 Mathematics 
C 52,334 72,036 116,384 147,284 185,110 

J 639 709 829 978 995 

18 Medicine 
C 1,199,012 1,508,466 1,883,407 1,966,601 2,052,114 

J 4,093 4,659 5,083 5,516 5,362 

19 Neuroscience 
C 171,760 204,718 233,529 250,574 252,858 

J 302 319 352 382 379 

20 Nursing 
C 28,336 41,534 56,870 59,513 69,289 

J 282 310 362 504 487 

21 Pharmacology 
C 132,571 170,099 215,512 243,774 256,516 

J 433 478 507 556 543 

22 Physics and Astronomy 
C 317,000 403,280 540,631 615,121 686,994 

J 725 749 853 907 890 

23 Psychology 
C 50,812 62,253 82,330 101,441 119,384 

J 809 921 1,055 1,209 1,284 

24 Social Sciences 
C 49,905 61,805 85,652 114,992 141,828 

J 2,081 2,456 3,024 3,562 3,749 

25 Veterinary Sciences C 13,557 17,927 22,181 26,868 32,907 



J 135 144 145 184 179 

26 Dentistry 
C 7,843 10,990 16,689 21,327 23,945 

J 85 97 108 126 125 

27 Health Professions 
C 20,299 26,502 34,542 40,072 51,206 

J 281 318 355 405 407 

Sum 
C 4,563,187 5,712,008 7,418,729 8,417,970 9,463,845 

J* 13,655 14,772 17,559 20,565 23,473 

Number of the same journals from the previous 
period 

J - 11,248 12,700 14,526 16,674 

% - 76.14% 72.32% 70.63% 71.03% 
*Some journals are associated with more than one major subject area; thus the total numbers of unique journals are smaller than 
the aggregated sum of journals from all 27 major subject areas. 

Because different subjects vary greatly in terms of volumes of citations, as can be seen in Table 1, proper 
normalizations are necessary before the path finding method can be applied. The 27 by 27 subject level 
citation matrices were processed by normalizing each row independently with a mean of 1 and a standard 
deviation of 1, a popular approach in network processing (e.g., Flores-Fernández et al., 2012). For each 
𝑥𝑖𝑖 in row i, the normalized value 𝑥𝑖𝑖𝑛𝑛𝑛𝑛 can be represented by 𝑥𝑖𝑖𝑛𝑛𝑛𝑛 = (𝑥𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑥) × (𝑦𝑦𝑦𝑦

𝑥𝑥𝑥𝑥
) +

𝑦𝑦𝑦𝑦𝑦 in which 𝑥𝑥𝑥𝑥𝑥 = 𝑥𝑖𝑖
∑ 𝑥𝑖𝑖𝑗

, 𝑥𝑥𝑥𝑥 = �1
𝑁
∑ (𝑥𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑥)2𝑗 , 𝑦𝑦𝑦𝑦𝑦 = 1, and 𝑦𝑦𝑦𝑦 = 1. The effect 

of different network normalization techniques on path finding is assessed in the Discussion section. 
Figure 1 shows an example of normalizing a 3 by 3 citation network. Each row shows the volume of 
outgoing citations.  

 

Figure 1. An example of network normalization 

Using the trading metaphor (Yan et al., 2013), the normalized subject-level citation links were converted 
into knowledge flow links such that if subject A has cited subject B with normalized weight a, there will 
be a knowledge flow from the cited subject B to the citing subject A with the same weight of a (see an 
example in Figure 2 (1.a and 1.b)). The normalized weights provide a more accurate investigation of 
network paths as these values are not susceptible to a high skewness which is present in most citation-
based data sets.  

Method 

Maximum spanning tree 

The standard path finding algorithms assume that the citation networks should be: (1) binary, that is, all 
citation links have the same weight of one; and (2) acyclic, that is, there should be no loop in the network 
(White, 2003). A typical example of this type of networks is the paper citation networks. However, many 



real-world networks are weighted and cyclic: their links have different strengths and they have at least 
one directed path that starts and ends in the same node. Examples of this type of networks include author 
citation networks, journal citation networks, and subject citation networks. The standard path finding 
algorithm, therefore, is not applicable to such networks, because it cannot make use of the information 
such as link weight.  

In light of this, we employ the maximum spanning tree (MST) algorithm to find paths in weighted, 
directed, and cyclic networks. To define a MST, we first introduce a spanning tree. For network G with 
vertex set V and link set E, a spanning tree is sub-network that contains all nodes V in G and subset of 
links from E that connects V such that it becomes a tree (i.e., no cycles). A MST is a spanning tree that is 
connected by a subset of links with the highest weight to form a tree. MST extracts critical knowledge 
paths in a network. These paths form the smallest set of links to maintain the flow of informationany 
further link removal from a MST will result in flow disruptions. For network G with vertex set V and link 
set E, the procedures of extracting a MST are (Kruskal, 1956):  

1. Sort the link set E in G in descending order based on link weight. Form an empty link set S. S 
will be used to contain links in the MST.  

2. Add the first link (i.e., the one with the highest link weight) to S. 
3. Add the next link to S if and only if it does not form a cycle in S.  
4. If S has n−1 links where n is the size of the vertex set E, then return S which is the obtained MST; 

if all links in E have been traversed and the number of links in S is smaller than n-1, then return 
with the information that G is a disconnected network; otherwise go back to step 3. 

This algorithm works with both directed and undirected networks. In the case of directed networks, a link 
from node A to B does not guarantee the existence of a reciprocal link from B to A. Assuming the citation 
flow network in Figure 2 is a normalized network through the method introduced in the Data section, to 
extract a MST in a knowledge flow network, the first step is to convert this normalized citation network 
by reversing the link directions, because knowledge flows into the citing entity from the cited one. We 
then use the resulted knowledge flow network to illustrate how to extract a MST from this network: 

1. Create an empty link set S. Rank all links in descending order. Add the links with the highest 
weight to S: A-C and A-D (Figure 2 (2.a)).  

2. Then add the link with the next highest weight to S: A-B (Figure 2 (2.b)).  
3. Then add the links with the next highest weight to S: C-E, C-F, and D-H (Figure 2 (2.c)). 
4. Then add the link with the next highest weight to S: C-G (Figure 2 (2.d)). 
5. Then add the links with the next highest weight to S: E-I and F-K. Links E-A and F-G were not 

added because adding them will result in cycles (Figure 2 (2.e)). 
6. Lastly, add the link with the next highest weight to S: E-J. Now S has 10 links which the number 

of nodes minus one. S is thus returned which contains the MST of the sample network (Figure 2 
(2.f)).  



 

Figure 2. An example of identifying paths through maximum spanning tree 

Citation flow, knowledge flow, and knowledge path 

In the past, several terms have been used to denote the flow of knowledge, including citation flow, 
knowledge flow, and knowledge path. They are used interchangeably in some cases whereas distinctively 
in the others. We give an operational definition of these related terms by using the same sample network 
in Figure 2. 



 

Figure 3. Examples of citation flow, knowledge flow, and knowledge path 

Figure 3 (a) is a citation flow network in that a link denotes the flow of citations from the citing node to 
the cited one, for instance, a one-hop citation flow from B to A and a two-hop citation flow from H to D 
and then to A. Using the trading metaphor, two knowledge flows are developed: a one-hop knowledge 
flow from A to B and a two-hop knowledge flow from A to D and then to H (Figure 3 (b)).  

Knowledge flows focus on nodes’ neighboring link structure; knowledge paths, on the other hand, 
consider the topology of the network. For instance, shortest path (e.g., Yan, 2014), epidemic models (e.g., 
Bettencourt et al., 2006; Kiss et al., 2010), maximum spanning tree (e.g., Gomez-Rodriguez, Leskovec, & 
Krause, 2010), and minimal spanning tree (e.g., Chen & Morris, 2003) are representative approaches to 
identify knowledge paths. One-hop knowledge paths (e.g., from A to C) are indeed one-hop knowledge 
flows; nonetheless, not all one-hop knowledge flows are one-hop knowledge paths, because some one-
hop knowledge flows are not on the knowledge paths (for instance, the knowledge flow from F to G is not 
a knowledge path). Knowledge paths do not negate the fact that knowledge flows in both directions. We 
use the concept of path here to denote the extraction of the most important knowledge channels in 
knowledge flow networks. We also acknowledge the fact that the most appropriate instrument to study 
knowledge diffusion should be paper citation relations (e.g., Hethcote, 2000; Kiss et al., 2010). The 
discipline-level citations may not possess sufficient granularity to warrant a diffusion study because the 
time stamps for individual papersthe very ingredient for diffusion studiesare aggregated and non-
traceable. Thus, realizing this limitation, this study will largely focus on the analysis of the network 
structure of several disciplinary citation networks through the MST method and will only make tentative 
implications to knowledge diffusion.  

Results 

Subjects in the maximum spanning tree 



This section presents the results on important subjects in the maximum spanning tree. In the language of 
graph theory, root subjects are the parent nodes and the branched subjects are the child nodes. The fact 
that a subject performs a parent role implies that it has an advantage to control and influence its child 
subjects. Table 2 shows for each subject, the number of subjects that are located in its branches. Thirteen 
subjects are included in Table 2, because the rest 14 subjects did not possess branches for any citation 
window.  

Table 2. Number of subjects located in each subject’s branches 

 Number of subjects located in the subject’s branches (rank) 

Subjects 1997/1999 2000/2002 2003/2005 2006/2008 2009/2011 All Time 

Medicine 26 (1) 26 (1) 26 (1) 26 (1) 26 (1) 130 (1) 

Biochemistry 13 (2) 13 (2) 13 (2) 13 (2) 13 (2) 65 (2) 

Chemistry 10 (3) 8 (3) 9 (3) 8 (3) 9 (3) 44 (3) 

Physics and Astronomy  6 (4) 6 (4) 6 (5) 4 (5) 1 (8) 23 (4) 

Materials Science  0 (-) 0 (-) 7 (4) 5 (4) 7 (4) 19 (5) 

Social Sciences 3 (5) 3 (5) 3 (7) 3 (7) 3 (6) 15 (6) 

Engineering 1 (7) 1 (7) 4 (6) 4 (5) 4 (5) 14 (7) 

Agricultural and Biological Sciences 3 (5) 2 (6) 1 (9) 2 (8) 1 (8) 9 (8) 

Computer Science 0 (-) 0 (-) 2 (8) 2 (8) 2 (7) 6 (9) 

Mathematics 1 (7) 1 (7) 1 (9) 1 (10) 1 (8) 5 (10) 

Business, Management and Accounting  0 (-) 1 (7) 1 (9) 1 (10) 1 (8) 4 (11) 

Environmental Science 1 (7) 1 (7) 0 (-) 1 (10) 0 (-) 3 (12) 

Economics, Econometrics and Finance 1 (7) 0 (-) 0 (-) 0 (-) 0 (-) 1 (13) 
 

The top three subjects with the highest numbers of branchesMedicine, Biochemistry, and 
Chemistrymaintained stable positions over the past five citation windows. The numbers of branches for 
Social Sciences and Mathematics also remained steady. In the meantime, some changes can be found: 
while Materials Science, Engineering, and Computer Science secured more branches, Physics reduced 
branches from six in the first three windows, to four in 2006/2008, and to one in 2009/2011. Economics 
used to be the root subject for Business in the first window and became its branch in the recent four 
windows. The results may be explained by the changes in raw numbers of incoming citation (see Table 1): 
for instance, for the three related subjects, the growth rates for Engineering and Materials Science are 
higher than that for Physics; likewise, the number of incoming citations for Business surpassed the 
number for Economics since the second window. At the same time, we should be aware of the 
confounding factors that may contribute to this outcome (e.g., reclassification of journals and release of 
new journals) and be reminded that subdomain analyses are needed so as to avoid misinterpretations of 
the disciplines’ waxing and waning status.  

Paths in the maximum spanning tree 

This section identifies the one-hop paths with the highest normalized weight in the MST. According to 
the trading metaphor, volumes of citations denote scientific trading impact. Thus, the paths with the 
highest normalized weight listed in Table 3 are the ones with the highest trading impact. Twenty-six paths 



are needed to connect all subjects for each citation window. There are 35 unique paths when combining 
the paths from all five MSTs. Among these, 18 paths occurred in all five MSTs; additionally, three 
occurred in four, four occurred in three, six occurred in two, and four occurred in one MST. The top 20 
paths by path weight in Table 3 include all 18 paths that occurred in five MSTs and two paths that 
occurred in four MSTs (the one from Physics to Engineering and the one from Business to Economics).  

Table 3. Top 20 paths with the highest normalized weight in the maximum spanning tree (one-hop) 

 Paths with the highest normalized weight in the maximum spanning tree (rank) 

Paths 1997/1999 2000/2002 2003/2005 2006/2008 2009/2011 All Time 

Medicine > Health Professions 5.60 (2) 5.62 (2) 5.67 (1) 5.65 (1) 5.59 (1) 28.14 (1) 

Medicine > Nursing 5.61 (1) 5.64 (1) 5.64 (2) 5.63 (2) 5.56 (2) 28.08 (2) 

Medicine > Pharmacology 4.38 (5) 4.54 (3) 4.67 (3) 4.58 (3) 4.61 (4) 22.78 (3) 

Medicine > Neuroscience 4.36 (6) 4.45 (6) 4.54 (4) 4.58 (4) 4.67 (3) 22.61 (4) 

Biochemistry > General 4.60 (3) 4.53 (4) 4.43 (6) 4.39 (7) 4.23 (8) 22.18 (5) 

Chemistry > Chemical Engineering 4.46 (4) 4.50 (5) 4.41 (7) 4.40 (6) 4.35 (7) 22.12 (6) 

Medicine > Immunology 4.28 (8) 4.36 (7) 4.45 (5) 4.44 (5) 4.52 (5) 22.05 (7) 

Social Sciences > Arts and Humanities 4.29 (7) 4.19 (8) 4.25 (8) 4.37 (8) 4.43 (6) 21.52 (8) 

Medicine > Psychology 3.94 (11) 4.12 (9) 4.11 (10) 4.13 (9) 4.06 (11) 20.37 (9) 

Medicine > Dentistry 4.21 (9) 4.10 (10) 4.00 (12) 3.99 (12) 4.07 (10) 20.36 (10) 

Medicine > Biochemistry 3.91 (12) 4.01 (11) 4.12 (9) 4.10 (10) 4.20 (9) 20.33 (11) 

Medicine > Veterinary Sciences 4.06 (10) 3.91 (12) 4.07 (11) 4.08 (11) 4.03 (12) 20.14 (12) 

Mathematics > Decision Sciences 3.89 (13) 3.56 (14) 3.56 (13) 3.74 (13) 3.61 (13) 18.36 (13) 

Engineering > Computer Science 3.47 (17) 3.72 (13) 3.01 (20) 3.08 (17) 3.10 (15) 16.38 (14) 

Agricultural Sci > Environmental Sci 3.37 (18) 3.25 (18) 3.43 (14) 3.16 (15) 2.79 (21) 16.00 (15) 

Biochemistry > Agricultural Sci 3.22 (20) 3.18 (20) 3.10 (18) 2.91 (22) 2.80 (20) 15.21 (16) 

Medicine > Social Sciences 2.75 (22) 2.79 (22) 2.94 (21) 2.92 (21) 2.72 (22) 14.12 (17) 

Physics > Engineering 3.64 (16) 3.29 (17) 3.23 (16) 3.02 (18) - 13.17 (18) 

Business > Economics - 2.91 (21) 2.79 (22) 2.92 (20) 2.96 (17) 11.58 (19) 

Biochemistry > Chemistry  2.39 (23) 2.27 (24) 2.30 (24) 2.25 (24) 2.15 (25) 11.36 (20) 

The path from Medicine to Health Professions has the highest overall normalized weight, indicating a 
salient flow from the knowledge exporter Medicine to the importer Health Professions. Additionally, 
there are nine other paths from Medicine to related disciplines among the top 20 paths. These results were 
obtained from the normalized knowledge flow networks thus suggesting an indispensable role of 
Medicine in communicating with neighboring disciplinesnot only measured by its absolute size but also 
by the normalized relative importance. Also on the top 20 list include path such as the ones from 
Chemistry to Chemical Engineering, form Social Sciences to Arts and Humanities, and from Mathematics 
to Decision Sciences. These paths are among the most important links in the knowledge flow networks: 
the removal of any will result in the fragmentation of the spanning trees. Overall, the rankings for these 
top ranked paths stayed stable during the past five citation windows. 

Maximum spanning tree and its dynamics 



This section reports the results of the MSTs extracted from the knowledge flow networks. Because most 
real-world networks are complex networks (Barabási, 2002), appropriate clustering and mapping 
techniques are required before these networks are sensible to the audience. Clustering and mapping 
sometimes can be conducted independently, but can also be achieved in an integrated way, such as the 
VOSviewer Clustering and Mapping technique (Waltman, van Eck, & Noyons, 2010). The subject-level 
knowledge flow networks, measured by the number of nodes, are by no means a complex network; thus 
clustering may not be a concern here. However, these networks are quite dense, because almost every 
node is connected with one another through citations. Consequently, it is not feasible to illustrate all 
knowledge flows without using certain complexity deduction method. To effectively capture essential 
knowledge flows, we utilize the built-in link reduction component in MST and only show the paths on the 
spanning tree. The spanning tree efficiently reduces the complexity of dense networks and codifies the 
“backbone of science” (Boyack, Klavans, & Börner, 2005, p. 351). The normalized weight for each of the 
26 paths in the MST is also shown in Figure 4.  

 

Figure 4. Maximum spanning tree extracted from the 2009/2011 knowledge flow network 

Medicine is the root of the MST and has 10 first-level branches because it served as the largest exporter 
of knowledge for these 10 subjects (as measured by the normalized numbers of citations). Among them, 
Biochemistry and Social Sciences have second-level branches. The Biochemistry-branch is the most 
elaborate: it has three second-, three third-, two fourth-, three fifth-, one sixth-, and one seventh-level 
branches. The Social Sciences branch has two second- and one third-level branches. Several multi-hop 
knowledge paths can be identified from Figure 4: 

• Medicine>>>Biochemistry>>>Agriculture Sciences>>>Environmental Science; 
• Medicine>>>Biochemistry>>>Chemistry>>>Materials Science>>>Physics>>>Earth and 

Planetary Science; 
• Materials Science>>>Engineering>>>Computer Science>>>Mathematics>>>Decision Sciences; 
• Social Sciences>>>Business>>>Economics.  



 
Figure 5 illustrates the topology changes of the MST across the five citation windows. Locations of the 
first-level branch remained stable during the five citation windows.  

 

Figure 5. Topology changes of the MST 

Figure 5 shows that the locations of the following subjects have changed in the MST: 

• Earth and Planetary Sciences: this subject was a branch of Environmental Science with the 
exception that it was a branch of Physics in 2003/2005 and 2006/2008.  

• Physics and Engineering: Engineering was a branch of Physics from 1997/1999 to 2006/2008 and 
was then in the same level as Physics in 2009/2011.  

• Physics and Materials Science: Materials Science was a branch of Physics in 1997/1999 and 
2000/2002 and was then the parent node of Physics in 2006/2008 and 2009/2011. 

• Mathematics and Computer Science: Computer Science was a branch of Mathematics in 
1997/1999; they were located in two branches in 2000/2002 (Mathematics was in the fifth-level 
and Computer Science was in the sixth-level); Computer Science became the parent node of 
Mathematics in the recent three windows.  

• Business and Economics (not shown in Figure 5): Business was a branch of Economics in 
1997/1999 and a parent node for Economics since 2000/2002. 
 

These topological changes may indicate a shift balance within these subjects in trading knowledge: the 
fact that some subjects (e.g., Materials Science, Computer Science, and Business) may have offered 
knowledge that others considered as useful and gradually procured more branches in MSTs; however, 
there may be alternative explanations and the data set of this study may not suffice a conclusive diagnosis 



of these changes. Fine-grained subfield analyses are necessary to further interpret these phenomena which 
will be pursued as a future research direction.  

The robustness of the MST method for networks normalized using different techniques is lastly 
investigated. Different choices of ymean and ystd in 𝑥𝑖𝑖𝑛𝑛𝑛𝑛 = (𝑥𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑥) × (𝑦𝑦𝑦𝑦

𝑥𝑥𝑥𝑥
) + 𝑦𝑦𝑦𝑦𝑦 will not 

affect the network topology because the formula shows that the normalized weight will change in 
proportion to different ymean and ystd values. Another popular network normalization method is to divide 
the cell value by the sum value of the corresponding row 𝑥𝑖𝑖𝑛𝑜𝑜𝑜′ = 𝑥𝑖𝑖

∑ 𝑥𝑖𝑖𝑗
 such that the sum value of each 

row is one. The MST method was also applied to networks normalized using this technique and results 
showed that the topology of the spanning trees was identical to that in Figures 4 and 5 thus providing 
evidence to support the robustness of the MST method. It is possible that other network normalization 
techniques may affect the resulted tree topology; nonetheless, we speculate that the variances will only 
occur at local branches.  

Discussion 

Science maps 

This section discusses the obtained MST with related science maps. To date, more than 20 types of 
science maps have been proposed (e.g., Boyack, Klavans, & Börner, 2005; Bollen et al., 2009; Klavans & 
Boyack, 2009; Leydesdorff & Rafols, 2009; Rafols, Porter, & Leydesdorff, 2010; Van Eck & Waltman, 
2010; Börner et al., 2012). These maps are mostly co-occurrence-based, using journal co-citation, journal 
bibliographic coupling, or journal clickstream data. The goal of these maps is to measure the cognitive 
proximity of one field to another. Klavans and Boyack (2009) have merged 20 existing science maps and 
identified the general proximity patterns of disciplines (i.e., the consensus map): starting from 
mathematics, there are “physics, physical chemistry, engineering, chemistry, earth sciences, biology, 
biochemistry, infectious diseases, medicine, health services, brain research, psychology, humanities, 
social sciences, and computer science” (p. 455). Compared with this consensus map, the obtained MST 
exhibits similar characteristics, for instance, in Figure 4, Medicine and Biochemistry are connected, so are 
Computer Science and Mathematics. Nonetheless, at the network-level, discrepancies can be found: in the 
consensus map, the general sequence is from mathematics to physics, to chemistry, to earth science, to 
medicine, and then to social science; however, one of the paths in the MST is from medicine to materials 
science to engineering, to computer Science, and to mathematics. Moreover, the most defining difference 
is that the consensus map is a co-occurrence-based map; thus orders are not decisive. For the MST 
method, the spanning tree denotes the direction of knowledge flows.  

A recent development of the flow map (Rosvall & Bergstrom, 2008) is probably the most similar to what 
we intend to attain here. In the flow map, molecular & cell biology and medicine are in the center 
connecting physical and life sciences; two regional hubs are also present: physics powers physical 
sciences (e.g., mathematics, engineering, and geosciences) and economics powers social sciences (e.g., 
political science, education, sociology, and business). From a visualization perspective, this flow map 
resembles the above mentioned co-occurrence-based science maps with the goal to partition journals or 
fields into groups. An examination of knowledge paths is still latent from these maps. 



Through MST, we have identified network paths from small but highly dense networks. MST illustrates 
the structure of the disciplinary knowledge flow networks: subjects such as Medicine, Biochemistry, and 
Social Sciences are in the front of the paths and tend to acquire a higher number of branched subjects. If 
we further classify these 27 subjects using the notion of STEM fields, we observed that the two critical 
links between STEM and non-STEM fields are from Mathematics to Decision Science and from Medicine 
to Social Sciences. The emerging trend of science teams has the potential to promote cross-field 
knowledge transfer as teams may comprise scientists and scholars of various expertise and backgrounds 
(e.g., Moody, 2004; Wuchty, Jones, & Uzzi, 2007).  

Applicability issues of a local path finding method 

In addition to the MST method employed in this paper, we also attempted to use a local path finding (LPF) 
method. LPF started off with a selected subject and identified the next connected subject that imports the 
highest amount of knowledge until there are no untraversed subjects left. However, we found that LPF is 
not applicable to diffusion studies: because LPF can only take one dependent at a time, the path will be 
largely rearranged if the weight of two closely valued links has changed in different citation windows. For 
instance, for links A-B and A-C, if the weight for A-B was slightly higher than A-C in time t but slightly 
smaller than A-C in time t+1, then A-B will be chosen by LPF in time t and A-C will be chosen by LPF in 
time t+1. These minor link weight changes interrupted the whole linear chain because of the one 
dependent rule. Therefore, we believe that LPF is susceptible to subtle changes in scores and is not a 
robust method for this type of knowledge diffusion study. 

Limitations 

The limitations of this study are largely derived from the characteristics of the citation data set. First, the 
journal-level citations were aggregated into the discipline level based on an artificial journal classification 
scheme ASJC. Although this scheme has an extensive index of all fields of sciences and social science, its 
coverage may be biased toward certain fields (see Table 1) and it is simply used as a proxy to study 
disciplinary knowledge flows. Second, the unit of analysis of this paper is disciplines and this unit has 
limited us from drawing firm conclusions on patterns of knowledge diffusion. Granular paper unit 
analyses should be able to shed light on research in this direction. Third, the data set only possessed plain 
citation and publication information and it lacked rich features to help gain more insights from the citation 
data. To reveal mechanisms of the changes in the network structure, additional data sources are expected 
to supplement the analyses; for instance, funding policies, community evolving features, and other socio-
technical factors can be cross-referenced to understand reasons that may lead to the dynamic changes.  

Conclusion 

In this paper, we have employed the MST algorithm to a dynamic discipline-level citation data set with 
the goal to identify knowledge paths among scientific disciplines. The use of the MST algorithm has 
helped gain understanding of the characteristics of disciplinary citation networks at three levels, including 
subjects, knowledge paths, and knowledge flow networks. 

This study has found that subject such as Medicine, Biochemistry, Chemistry, Materials Science, Physics, 
and Social Sciences are the ones with multiple branches in the spanning tree and thus may be associated 
with the ability to influence their branches. In addition, this study has found that most paths connect 



STEM fields (e.g., Medicine>>>Biochemistry>>>Agriculture Sciences>>>Environmental Science and 
Medicine>>>Biochemistry>>>Chemistry>>>Materials Science>>>Physics>>>Earth and Planetary 
Science); two critical links between STEM and non-STEM fields are the one from Mathematics to 
Decision Science and the one from Medicine to Social Sciences.  

Diachronically, this study has found subjects such as Business, Materials Science, Engineering, and 
Computer Science have moved toward the root of the spanning tree. For network paths, this study has 
helped identify the shifting impact between Physics and Engineering, between Physics and Materials 
Science, between Mathematics and Computer Science, and between Business and Economics. Future 
research will benefit from conducting fine-grained subfield analyses using rich multi-facet to reveal the 
latent mechanisms that lead to the dynamic changes.  
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