Prime sum Graphs - Part 2

Bertrand Graphs

Suryaprakash Rao
Powai, Mumbai-400076

Chetan S Rao
Penn, USA

Neha S Rao
CA, USA

(15 May 2011)

Abstract

Bertrand graph is defined as a subgraph of a prime sum graph. Some properties of Bertrand graphs are studied with a list of problems.

PSGraph \(P_n \) restricted to the edges \((x,y) \) such that \(x+y>n \) is called Bertrand Subgraph of \(P_n \) and is denoted by \(B_n \). Note that weights of the edges in \(B_n \) are primes \(p, n<p \leq 2n-1 \). PSGraph is a sparse graph and Bertrand graph being a subgraph of PSGraph is not only sparse but also disconnected for many values of \(n \).

Bertrand's postulate

Bertrand's postulate (now a theorem) states that for each \(n \geq 2 \) there is a prime \(p \) such that \(n < p < 2n \).

It was first proven by Pafnuty Chebyshev, and a short but advanced proof was given by Srinivasa Ramanujan. An elementary but involved proof by contradiction was due to Paul Erdős; the basic idea of the proof is to show that a certain binomial coefficient needs to have a prime factor within the desired interval in order to be large enough.

In terms of \(B_n \) an equivalent statement is:

Bertrand's Postulate. Bertrand subgraph is nonempty or there is at least one edge in \(B_n, n>1 \).

Fig. 1 \(B_n \) for \(n=4,6,8,10,12,14,16 \).

Degree Sequence

Define \(\sigma_b \)-function as, \(\sigma_b(i)=|\{x<i: x+i \text{ is a prime}\}| \). \(\sigma_b(i) \) represents the degree of the node \(i \) in \(B_n \). Note that, a pair \((x,i) \) with \(x+i \) a prime is an edge in \(B_n \).

\((n,m)\)-PSGraph: \(m=\sum \sigma_b(i), i=1,...,n \).

Following Table shows the degree sequence for \(B_n, n \) even and \(n=4 \) to 32.
Connectivity of Bertrand Graph

Sparsity of edges in B_n, see also Fig. 1, shows that Bertrand graph B_n may not always be connected. B_n is connected assures a path between any two nodes. That is, for an arbitrary pair of nodes u,v in B_n there is a $u-v$ path with edge weights being primes.

Lemma 1. If $n+1$ is not prime then B_n is disconnected.

B_n is disconnected for many values. In fact, it contains isolated nodes. B_6 is disconnected consisting of 2 components: a 2-path and a 4-path.

Lemma 2. B_n has a perfect matching if $n+1$ is prime.

That is, B_n has a pairing of its nodes so that each pair sums to a prime.

Theorem 3. B_n is connected if $n+1$ is prime and there exists a triplet $(x,x+1,x+2)$ such that $(x,x+1),(x+1,x+2)$ are edges in B_n with the parallel edges spanning the nodes at least from n to $n/2$.

As an example, $1,2,8,3,26,5,...,18,13,16,15,14,17,12,...,4,27,2$ is a Hamiltonian path in B_{28}, where $28+1=29$ is prime.

Conjecture. B_n is connected iff $n\neq 6$ and $n+1$ is prime.

This is dependent on the following:

Conjecture. For $n>6$ there is at least one twin prime pair or a consecutive triple $(x,x+1,x+2)$ such that $2x+1$ and $2x+3$ are primes in B_n between $n/2$ and n where n is such that $n+1$ is prime.

Table below shows B_n for $n\leq 60$, n even with $n+1$ prime and a triple as in Theorem 3.

<table>
<thead>
<tr>
<th>n</th>
<th>4</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>22</th>
<th>28</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>46</th>
<th>52</th>
<th>58</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n Connected</td>
<td></td>
</tr>
<tr>
<td>B_n Connected</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>B_n Connected</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>15</td>
<td>21</td>
<td>21</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>B_n Connected</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>22</td>
<td>22</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>
Note that \(n=18 \) don't appear in the table. The pairs \((9,10)\) and \((11,12)\) represent cousin primes 19 and 23. The prime 19 is CP whereas 23 is friendly with 5 in \(B_{18} \). The edges of 23 together with the CP 19 form disjoint 1-2 and 3-4 paths viz., 1,18,5,14,9,10,13,6,17,2 and 3,16,7,12,11,8,15,4 spanning all the 18 nodes. The pair \((14,15)\) in addition makes the graph \(B_{18} \) connected.

MATLAB

The concept of **prime sum and prime power sum labelings** and respectively **prime sum and prime power sum graphs** were first conceived of by the authors during May 2011 while studying **coprime labelings and coprime graphs**. The prime sum concept bears direct relation with Bertrand’s Hypothesis.

The MATLAB code was written to generate these graphs using the geometry of \(n \)-th roots of unity. This aided in defining the circular representation of positive integers and the subsequent ideas of integer classification based on CRI.

Two representations were incorporated, viz.,

- The first one uses the base geometry of \(n \)-th roots of unity on a unit circle with the first point labelled 1 placed at \((1,0)\).
- The second one uses bipartition. For our purpose the bipartition with the labels partitioned into even \(\mathcal{E} \) and odd \(\mathcal{O} \) labels only are considered here.

A library of \(P_n \) and \(B_n \) for \(n=100 \) and above was generated and were useful to understanding and looking for symmetry or regularity.

More Problems on \(P_n \)

The even prime 2 does not appear as an edge weight in \(P_n \). Since the edge weights in \(P_n \) are primes it is relevant to ask questions like:

1. Does there exist cycles or paths with distinct edge weights? If so what is the longest cycle or path in \(P_n \). Investigate.
2. Does every cycle in \(P_n \) have a pair of parallel edges?
 The answer is no irrespective of parity of \(n \). Consider the cycle 1,4,7,6,1 or 2,3,4,7,6,5,2 in \(P_7 \) and the quadrangle 5,6,7,12,5 in \(P_{12} \). They are cycles with no parallel edges. Describe cycles with a parallel pair of edges.
3. Does there exist a cycle in \(P_n \) containing all odd primes \(\leq 2n \)?
 The answer is yes. For example, take \(n=10 \). The 10-cycle: 5,6,7,4,3,2,1,10,9,8,5 realises all primes \(\leq 20 \) as edge weights. Another example is, the 12-cycle 11,12,1,2,3,4,9,10,7,6,5,8,11 realises all primes \(\leq 24 \) as edge weights.
4. What happens if \(n \) is odd? It is known that \(P_n \) for \(n \) even is Hamiltonian and \(P_{n+1} \) has a Hamiltonian path.
References

Abstract
In 1845 Bertrand postulated that there is always a prime between \(n \) and \(2n \), and he verified this for \(n < 3,000,000 \). Tchebychev gave an analytic proof of the postulate in 1850. In 1932, in his first paper, Erdős gave a beautiful elementary proof using nothing more than a few easily verified facts about the middle binomial coefficient. We also describe a result of Greenfield and Greenfield that links Bertrand’s postulate to the statement that \(\{1, \ldots, 2n\} \) can always be decomposed into \(n \) pairs such that the sum of each pair is a prime.

Theorem 1.2 For \(n > 0 \), the set \(\{1, \ldots, 2n\} \) can be partitioned into pairs \(\{a_1, b_1\}, \ldots, \{a_n, b_n\} \) such that for each \(1 \leq i \leq n \), \(a_i + b_i \) is a prime.

2. **On integral sum graphs**

Harary introduced **sum graphs on integers** which are now known as **Integral Sum Graphs**. Since then several papers have appeared on the concept.

Abstract
We introduced the sum graph of a set \(S \) of positive integers as the graph \(G(S) \) having \(S \) as its node set, with two nodes adjacent whenever their sum is in \(S \). Now we study sum graphs over all the integers so that \(S \) may contain positive or negative integers on zero. A graph so obtained is called an integral sum graph. The sum number of a given graph \(G \) was defined as the smallest number of isolated nodes which when added to \(G \) result in a sum graph. The integral sum number of \(G \) is analogous. We see that all paths and all matchings are integral sum graphs. We find the integral sum number of the small graphs and offer several intriguing unsolved problems.

3. **Open Problems - Graph Theory and Combinatorics** collected and maintained by Douglas B. West, http://www.math.uiuc.edu/~west/

Combinatorial Gray codes
Named for the classical Gray code listing binary vectors (cyclically) with one bit change between successive vectors, A combinatorial Gray code is a listing of the objects in a set using only specified changes between successive objects. The last item should also be close to the first, so what is sought is a Hamiltonian cycle in the graph defined by the permitted adjacencies.

- **Revolving Door (Middle Levels) Conjecture** (there is a cycle through the subsets of \(\mathbb{Z}_{2k+1} \) with sizes \(k \) and \(k+1 \) by adding or deleting one element at each step)
- **Traversal by Prime Sum** (for \(m \geq 2 \), does the graph with vertex set \(\mathbb{Z}_{2m} \) and edges joining numbers whose sum is prime always have a Hamiltonian cycle?)

Question: Let \(G_m \) be the graph with vertex set \(\{1, 2, 3, \ldots, 2^m\} \) such that \(x \) is an edge if and only if \(x+y \) is prime. Is \(G_m \) Hamiltonian when \(m \geq 2 \)?

Comments/Partial results: It is easy to build a Hamiltonian cycle when \(2m+1 \) and \(2m+3 \) are both prime, but it is not even known if \(G_m \) is Hamiltonian for infinitely many \(m \).

References: This question was discussed in a thread on the now-defunct mailing list COMB-L. http://sci.tech-archive.net/Archive/sci.math/2008-05/msg00047.html

Circular Prime Sums, *From: Albert, Date: Wed, 30 Apr 2008 23:47:10 -0700 (PDT)*, On May 1, 10:55 am, Gerry Myerson.