ENIAC – the First Digital Computer

- ENIAC contained 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints. It weighed 60,000 lb, was roughly 8 feet by 3 feet by 100 feet, took up 1800 square feet, and consumed 150 kW of power.
- It was unveiled on February 14, 1946 at Penn, having cost almost $500,000.
- Computer clock frequency = 100 kHz.
- 200 microseconds for operations on the 10-digit numbers.
- 2.8 ms for a 10- by 10-digit multiplication
- ENIAC's tube failures were reduced to the more acceptable rate of one tube every two days in 1948.
ENIAC – Electronic Numerical Integrator And Calculator

MOS 6502 Chip – Apple II

- The chip is 40-pin DIP. An 8-bit processor with a 16-bit address bus.
- It costs $25 in 1975.
- Computer clock frequency = 1 MHz.
- One 8-bit accumulator register (A), two 8-bit index registers (X and Y), an 8-bit process status register (P), an 8-bit stack pointer (S), and a 16-bit program counter (PC).
F2812 Chip – 32-bit DSP
• The chip is 12mm x 12 mm x 1.4mm, and consumed 0.8 W of power.
• It costs $3 - $20.
• Computer clock frequency = 150 MHz.
• 6.67 nanoseconds for operations on the 32-bit numbers.
• 6.67 ns for a 32-bit by 32-bit multiplication
• Very reliable
• Much more functions

F28335 Chip – 32-bit Floating-point DSP
• The chip is 12mm x 12 mm x 1.4mm, and consumed 0.8 W of power.
• It costs $3 - $20.
• Computer clock frequency = 150 MHz.
• 6.67 nanoseconds for operations on the 32-bit numbers.
• 6.67 ns for a 32-bit by 32-bit multiplication
• Very reliable
• Much more functions
Challenges of Real-Time System Design

- Cost
- Low power
- Time to market
- Increased performance demand
- Feature flexibility
- Development complexity

A Typical Real-Time Control System

ADC: analog-to-digital converter
DAC: digital-to-analog converter
Input Signal Conditioning

• Types of signal conditioning
 - Amplification
 - Level translation
 - Filtering
 - Buffering - impedance translation

• Typical transducers that require conditioning
 - Microphones
 - Speed & Position Sensors
 - Temperature or Pressure Sensors
 - Imagers

Linear Circuits for Signal Conditioning

• Operational Amplifiers (BW<50 MHz)
 - General purpose building blocks
 - Used for low-speed applications
 - Key considerations are precision and DC performance

• High Speed Amplifiers (BW>50 MHz)
 - Used for high-speed signals such as imaging and RF
 - Key considerations are: AC performance, distortion BW

• Instrumentation Amplifiers
 - Used specifically with low level signals where excellent noise rejection and precision are required
Data Converters

- **Analog-to-Digital Converters (ADC)**
 - Analog input to digital output
 - Output is typically interfaced directly to DSP
- **Digital-to-Analog Converters (DAC)**
 - Digital input to analog output
 - Input interfaces directly to DSP
- **CODEC**
 - Data converter system
 - Combination of ADC and DAC in single package

\[e(t) \rightarrow \text{ADC} \rightarrow \text{DSP} \rightarrow \text{DAC} \rightarrow m(t) \]

Texas Instruments DSP Microprocessor
TMS320F28335
TI DSP Microprocessor TMS320F28335

- 150 MHz, 32-Bit CPU, Harvard Bus Architecture
- Code-Efficient (in C/C++ and Assembly)
- On-chip memory: 128K x 16 Flash, 5K x 16 ROM, 14K x 16 RAM, Standard Math Tables
- 256K x 16 Flash, 34K x 16 – 2 x 8 Channel Input Multiplexer Saram
- 58 Peripheral Interrupts
- Three 32-bit CPU Timers
- 18 16-Bit PWM channels,
- 6 Capture Units (2 of them can be for QEP)
- 16 12-Bit ADC channels
- SPI, SCI, UART, eCAN, McBSP
- 88 GPIO pins

Texas Instruments DSP Microprocessor TMS320F6416
TI DSP Microprocessor TMS320F6416

• Highest-Performance Fixed-Point (DSPs)
 – Eight 32-Bit Instructions/Cycle
 – Up to 720MHz Clock Rates
 – Up to 28 Operations/Cycle
 – Up to 5760 MIPS

• Advanced Very Long Instruction Word
 Eight Highly Independent Functional Units:
 Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
 Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock Cycle or Eight 8 x 8-Bit Multiplies (16-Bit Results) per Clock Cycle
 64 32-Bit General-Purpose Registers

TI DSP Microprocessor TMS320F6416

• L1/L2 Memory Architecture
• Two External Memory Interfaces (EMIFs)
 One 64-Bit (EMIFA), One 16-Bit (EMIFB)
 Glueless Interface to Asynchronous Memories (SRAM and EPROM) and Synchronous Memories (SDRAM, SBSRAM, ZBT SRAM, and FIFO)
 1280M-Byte Total Addressable External Memory Space

• Three Multichannel Buffered Serial Ports:
 – Serial-Peripheral-Interface (SPI)
 – Direct Interface to T1/E1, MVIP, SCSA Framers
 – AC97 Interface
• 32-Bit/33-MHz, 3.3-V PCI Master/Slave Interface
Texas Instruments DSP Microprocessor
TMS320F6713

- Highest-Performance Floating-Point (DSPs)
 - Eight 32-Bit Instructions/Cycle
 - 32/64-Bit Data Word
 - Up to 300MHz Clock Rates
 - Up to 2400/1800 MIPS /MFLOPS
 - Rich Peripheral Set, Optimized for Audio
 - Highly Optimized C/C++ Compiler

- Advanced Very Long Instruction Word
 - Eight Independent Functional Units:
 - Two ALUs (Fixed-Point)
 - Four ALUs (Floating- and Fixed-Point)
 - Two Multipliers (Floating- and Fixed-Point)
 - Load-Store Architecture With 32 32-Bit General-Purpose Registers
TI DSP Microprocessor TMS320F6713

• 32-Bit External Memory Interface (EMIF)
 – Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM
 – 512M-Byte Total Addressable External Memory Space

• Two Multichannel Buffered Serial Ports:
 – Serial-Peripheral-Interface (SPI)
 – High-Speed TDM Interface
 – AC97 Interface

Digital Controller Design _ 1

Sampled-data feedback control system

Its discrete-time equivalent
Find \(K(z) \) so that the closed-loop system has a desired performance.

Digital Controller Implementation

\[
K(z) = \frac{M(z)}{E(z)} = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}}
\]

\[
M(z) = a_0 X(z) + a_1 z^{-1} \cdot X(z) + a_2 z^{-2} \cdot X(z)
\]

\[
X(z) = E(z) - b_1 z^{-1} \cdot X(z) - b_2 z^{-2} \cdot X(z)
\]

\[
m(k) = a_0 x(k) + a_1 \cdot x(k-1) + a_2 \cdot x(k-2)
\]

\[
x(k) = e(k) - b_1 \cdot x(k-1) - b_2 \cdot x(k-2)
\]
Inverted Pendulum: 180 deg swing up

Inverted Pendulum: 45 deg swing up
Inverted Pendulum: moderate disturbance

Inverted Pendulum: violent disturbance