On the heat capacity of Ti$_3$GeC$_2$

Monika K Drulisa, Andrzej Czopnika, Henryk Drulisa,*, Jonathan E Spanierb, Adrish Gangulyb, Michel W Barsoumb

a Polish Academy of Sciences, Trybunałowski Institute of Low Temperature and Structure Research, P.O. Box 1410, 50-950 Wrocław 2, Poland
b Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA

Received 19 October 2004; received in revised form 9 February 2005; accepted 9 February 2005

Abstract

In this paper, we report experimental data of the heat capacities, c_p, of bulk polycrystalline samples of Ti$_3$GeC$_2$ in the 3–260 K temperature range. The results obtained are compared with those on Ti$_3$SiC$_2$. The c_p results are analyzed using the Debye and Einstein models and are compared to the heat capacities values calculated from first principles. At temperatures up to 10 K the main contributors to c_p are electrons with $\gamma = 6.5$ (mJ/mol K2) and phonons with a Debye temperature θ_D of 556 K. In that temperature range only four atoms of the six in a formula unit—most likely one Ge and three Ti atoms—contribute to c_p. In the 10–120 K temperature range excellent fits were obtained using a θ_D of 513 K and an optical mode with an Einstein temperature θ_E of 139 K. For $T > 120$ K, five additional optical modes with $\theta_E = 870$ K are required to properly fit the experimental results. The ab initio calculations throughout the temperature range (4–1500 K) show reasonably good agreement with the experimental data obtained particularly at low temperatures.

Keywords: Thermal properties; Ceramics; Titanium; Germanium; Carbides

1. Introduction

The ternary carbides with the general formula M$_{n+1}$AX$_n$, where $n = 1–3$, M is an A-group element (mostly IIIA and IVA), and A is C and/or N [1–4] form a large family of the layered hexagonal (space group $D_{6h} = P6_3/mmc$) compounds with two formula units per unit cell. By now it is fairly well established that these phases constitute a new class of solid best described as polycrystalline nanolaminates as a consequence of their layered structure and their propensity to kink and delaminate during deformation [2].

The M$_{n+1}$AX$_n$ phases combine an unusual, and sometimes unique, set of properties [2–12]. Like their corresponding binary carbides and nitrides, they are elastically stiff [5,6], have relatively low thermal expansion coefficients, good thermal and electrical conductivities, and are resistant to chemical attack [2]. They are relatively soft (1–5 GPa) and most readily machinable, thermal shock, and damage tolerant [2,4]. Moreover, some are fatigue [11], creep [12], and oxidation resistant [13]. At higher temperatures, they undergo a brittle to ductile transition [2]. At room temperature, they can be compressed to stresses up to 1 GPa and fully recover upon removal of the load, while dissipating 25% of mechanical energy [7]. The most studied of these phases is Ti$_3$SiC$_2$ [2,13]. Of special interest to this work is Ti$_3$GeC$_2$ and Ti$_3$SiC$_2$. The unit cell of both compounds consists of Ti$_3$X$_2$ layers interlaced with layers comprised of hexagonal nets of pure Si or Ge [14]. Because the Si to Si and Ge to Ge distances along a (≈ 3.07 Å) in the ternaries are considerably longer than their covalent bonding in pure Si (2.35 Å) and Ge (2.44 Å) consequently, these atoms act as rattlers that tend to vibrate along the a-direction [2]. The bonding in these compounds is comparable to TiC, viz. a combination of ionic, covalent, and metallic characters [2,15]. However, the density of states (DOS) of 5 (eV unit cell)$^{-1}$ at the Fermi level for Ti$_3$SiC$_2$ [15] is considerably larger than in TiC. Ti$_3$GeC$_2$ is roughly twice as electrically and thermally conductive as Ti [16,17]. While currently the low temperature properties of Ti$_3$SiC$_2$ are...
reasonably well characterized [18–22], the same information for Ti₃GeC₂ does not exist. Recently, a number of papers have been published on the properties of Ti₃GeC₂ and its solid solutions with Ti₃SiC₂ [23,24]. In ref. 24 the room temperature elastic, and low (4–300 K) temperature transport properties of Ti₃SiₓGe₇–ₓC₂ were measured and found to be quite insensitive to x. Young’s modulus of Ti₃GeC₂ is 340 GPa and its thermal expansion coefficient in the 25–1200°C temperature range is 7.8 × 10⁻⁶°C⁻¹. In another paper [23] it was shown that the mechanical properties are also quite insensitive to x.

The purpose of this paper is to report on and analyze the heat capacities, \(c_p \), for Ti₃GeC₂ over the 3–260 K temperature range. These results are compared with those of the isostructural Ti₃SiC₂, as well as ab initio calculations of \(c_p \).

2. Experiment

The synthesis procedure is described in detail in ref. [23]. In short, appropriate stoichiometric mixtures of Ti, C and Ge powders were hot pressed at 1600°C for 48 h in an argon atmosphere to render the samples single phase. The polished samples were micro structurally characterized using an optical microscope (PMG3, Olympus, Tokyo, Japan) and a field emission scanning electron microscope, FESEM (XL-30, FEI-Philips, Hillsboro, OR) equipped with an energy depressive spectroscope, EDS (Edax Inc., Mahwah, NJ). The predominantly single phase samples contained ∼ 3 vol.% TiO₂. All samples were >99% dense.

The \(c_p \) measurements were carried out between 3 and 260 K, using two different adiabatic calorimeters. In the first, which operates in the 2–70 K temperature range, a small bulk sample (∼1 g) is thermally anchored by Apiezon N grease to a sapphire plate, which, in turn, is suspended by threads inside the adiabatic shield. Also mounted on the plate are a resistance thermometer Cernox 1030-3C and a nichrome heater. The calorimeter is fully automated. In the second device, which operates in the 2–280 K temperature range, a larger bulk piece (∼1 g) is thermally anchored by a small bulk piece (∼1 g) is thermally anchored by an applied pressure of ∼45 MPa. The samples were then annealed at 1600°C for 48 h in an argon atmosphere to render the samples single phase.

The purpose of this paper is to report on and analyze the heat capacities, \(c_p \), for Ti₃GeC₂ over the 3–260 K temperature range. These results are compared with those of the isostructural Ti₃SiC₂, as well as ab initio calculations of \(c_p \).

2. Experiment

The synthesis procedure is described in detail in ref. [23]. In short, appropriate stoichiometric mixtures of Ti, C and Ge powders were hot pressed at 1600°C for 48 h using an applied pressure of ∼45 MPa. The samples were then annealed at 1600°C for 48 h in an argon atmosphere to render the samples single phase. The polished samples were micro structurally characterized using an optical microscope (PMG3, Olympus, Tokyo, Japan) and a field emission scanning electron microscope, FESEM (XL-30, FEI-Philips, Hillsboro, OR) equipped with an energy depressive spectroscope, EDS (Edax Inc., Mahwah, NJ). The predominantly single phase samples contained ~ 3 vol.% TiO₂. All samples were >99% dense.

The \(c_p \) measurements were carried out between 3 and 260 K, using two different adiabatic calorimeters. In the first, which operates in the 2–70 K temperature range, a small bulk sample (∼1 g) is thermally anchored by Apiezon N grease to a sapphire plate, which, in turn, is suspended by threads inside the adiabatic shield. Also mounted on the plate are a resistance thermometer Cernox 1030-3C and a nichrome heater. The calorimeter is fully automated. In the second device, which operates in the 2–280 K temperature range, a larger bulk piece (∼1 g) is thermally anchored by Apiezon N grease to a sapphire plate, which, in turn, is suspended by threads inside the adiabatic shield. Also mounted on the plate are a resistance thermometer Cernox 1030-3C and a nichrome heater. The calorimeter is fully automated.

In both cases, a computer was used to control the set-up and acquire the data. The \(c_p \) of each sample was obtained by subtracting the addenda contributions.

3. Results and discussion

The temperature dependence of \(c_p \) for Ti₃GeC₂ is depicted in Fig. 1. Table 1 lists the \(c_p \) values for Ti₃GeC₂ together with its relevant thermodynamic functions.

For metallic-like, three-dimensional materials at the lowest temperatures, \(c_p \) can be approximated by the well-known relationship

\[
\frac{c_p}{T} = \gamma T + \beta T^3
\]

where \(\gamma \) and \(\beta \) are the coefficients of electronic and lattice heat capacities, respectively.

A plot of \(c_p/T \) vs. \(T^2 \) for Ti₃GeC₂ yields a straight line (lower inset in Fig. 1) with a slope \(\beta = 4.5 \pm 0.1 \times 10^{-3} \text{mJ/mol K}^4 \) and intercept \(\gamma = -6.5 \pm 0.1 \text{mJ/mol K}^2 \). The DOS at the Fermi level is thus calculated to be 5.52 (eV/unit cell)⁻¹, which is not too different from the value of 5 (eV/unit cell)⁻¹ obtained for Ti₃SiC₂.
At low temperatures, β in Eq. (1) is related to the Debye temperature θ_D by

$$\beta = \left(\frac{12}{5}\right) N R \theta_D^4 (\theta_D/\beta)^3$$

(2)

where N is the number of modes per formula unit, and R is the molar gas constant. For simple solids with atoms that are not too different in mass, $N=3r$, where r is the number of atoms per formula unit and the calculation of θ_D from Eq. (2) is straightforward. However, in cases when atoms with different masses are involved, not all of which may be participating fully in the acoustic vibrations—the latter an implicit assumption in Debye’s theory—it is not obvious what the r values should be. Following the arguments described in detail in ref. [22], here we again conclude that only 12 modes, or four atoms—most likely three Ti and one Ge—effectively contribute to the Debye lattice part of c_p in the lowest temperature regime.

Assuming $N=12$ in Eq. (2) results in $\theta_D = 556$ K. Note that θ_D, as a rule, only describes the temperature dependence of c_p for $T<\theta_D/10$. To better understand the various terms that contribute (apart from Debye) to c_p at slightly higher temperatures, it is useful to plot the c_p data as a c_opt versus T (upper inset in Fig. 1). When plotted thusly, a maximum at $T_{\text{max}} = 280$ K for Ti$_3$GeC$_2$ is evident. Such maximum is in good agreement with the value of c_p found here for an anomaly in the Ge atom modes, which is at 150 K smaller than 1.5 J/mol K.

To better understand the various terms that contribute (apart from Debye) to c_p at slightly higher temperatures, it is useful to plot the c_p data as a c_opt versus T (upper inset in Fig. 1). When plotted thusly, a maximum at $T_{\text{max}} = 280$ K for Ti$_3$GeC$_2$ is evident. Such maximum is in reasonable agreement with the value of c_p of $N=12$ in Eq. (2) is straightforward. However, in cases when atoms with different masses are involved, not all of which may be participating fully in the acoustic vibrations—the latter an implicit assumption in Debye’s theory—it is not obvious what the r values should be. Following the arguments described in detail in ref. [22], here we again conclude that only 12 modes, or four atoms—most likely three Ti and one Ge—effectively contribute to the Debye lattice part of c_p in the lowest temperature regime.

Assuming $N=12$ in Eq. (2) results in $\theta_D = 556$ K. Note that θ_D, as a rule, only describes the temperature dependence of c_p for $T<\theta_D/10$. To better understand the various terms that contribute (apart from Debye) to c_p at slightly higher temperatures, it is useful to plot the c_p data as a c_opt versus T (upper inset in Fig. 1). When plotted thusly, a maximum at $T_{\text{max}} = 280$ K for Ti$_3$GeC$_2$ is evident. Such maximum is in reasonable agreement with the value of c_p found here for an anomaly in the Ge atom modes, which is at 150 K smaller than 1.5 J/mol K.

To fit the experimental data at $T>120$ K, more optical modes in the phonon density of states must be taken into account. As noted previously for Ti$_3$SiC$_2$ [22] some optical vibration modes associated mainly with the Ti=C=Ti bonds in the Ti$_3$C$_2$ octahedra become active only at higher temperatures. This conclusion is bolstered by recent Raman spectra studies [26] and ab initio calculations made for this compound [27]. In our previous paper [22] we modelled the contribution of the C atoms to c_p in Ti$_3$SiC$_2$ for $120 \leq T \leq 260$ K taking $\theta_C = 942$ K for the carbon modes as deduced from the Raman spectra analysis [26] and assuming $N=6$ (see Fig. 9 in ref. [22]). To be sure that our assumption ($N^*=6$) is valid also in the highest temperature range we repeated this calculation, but over a wider temperature range $120 \leq T \leq 1500$ K to enable comparison with experimental high temperature ($T>500$ K) c_p results for Ti$_3$SiC$_2$ taken from ref. [17]. All previously calculated low temperature parameters (see ref. [22]) were fixed here and the only variable was the number of carbon atom modes, N^*. As seen in Fig. 3, much better agreement between the calculated c_p and measured c_p is obtained for $N^*=5$ rather than for $N^*=6$, suggesting that one of the C atom modes is participating at lower temperatures. Note that at $T=500$ K the agreement between the experimental and calculated results is pretty good; the difference ($c_p^e - c_p^m$) for $N^*=5$, does not exceed 2% (Fig. 3). We neglected the possible difference $c_p^e - c_p^m$ caused by thermal expansion at high temperatures, which is at 1500 K smaller than 1.5 J/mol K.

The fact that the ab initio calculations (see below) actually bridge the two sets of experimental results lends them even more credence.

Unfortunately, similar high temperature c_p data for Ti$_3$GeC$_2$ do not exist. Nevertheless, we calculated c_p of Ti$_3$GeC$_2$ up to 1500 K, assuming, per analogy to Ti$_3$SiC$_2$, that at high temperatures only five of six carbon modes con-
Table 2

Summary of parameters deduced in this and previous work

<table>
<thead>
<tr>
<th>Material</th>
<th>γ (mJ/mol K^2)</th>
<th>β (mJ/mol K^4)</th>
<th>θ (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti_3SiC_2</td>
<td>6.41</td>
<td>0.041</td>
<td>575</td>
</tr>
<tr>
<td>Ti_3GeC_2</td>
<td>6.50</td>
<td>0.045</td>
<td>556</td>
</tr>
</tbody>
</table>

T < 10 K, N = 1 | T > 20 K, N = 5 | Shear modes N₁ = 1 | Carbon modes N₂ = 5

<table>
<thead>
<tr>
<th>Material</th>
<th>θ (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti_3SiC_2</td>
<td>218</td>
</tr>
<tr>
<td>Ti_3GeC_2</td>
<td>218</td>
</tr>
</tbody>
</table>

a Ref. [22].

Fig. 3. Fitting of cp results of Ti_3SiC_2 in the 4–1500 K temperature range with different number of C-atom modes contributing at high temperatures. Also included are ab initio calculations of the heat capacity cv versus T for Ti_3SiC_2 compound. Experimental data taken from refs. [22,17] for T > 500 K.

For Ti_3GeC_2 at ambient and higher temperatures should be measured.

The results of the ab initio calculations of cv for Ti_3SiC_2 and Ti_3GeC_2 at temperatures from 2 < T < 1500 K, were carried out using the so-called first principles direct methods [28]. The calculated heat capacity were obtained directly from calculations of phonon dispersions and density of states in Ti_3GeC_2 [27] using the Vienna ab initio Simulation Package (VASP) [29] and PHONON [28]. Canonical positions of the Ti atoms were used, and a supercell of 108 atoms was constructed; supercell coordinates were “relaxed” prior to calculating structures with displaced atoms. Translational and rotational invariance conditions were enforced for the derivation of the force constants, and no approximation to LO/TO splitting was made. The agreement of these calculations with experimental data and with those calculate analytically at high temperatures is reasonably well.

All parameters measured or calculated in this study are summarized in Table 2.

4. Conclusions

Based on this work we surmise that the total phonon densities of states in Ti_3GeC_2 and Ti_3SiC_2 are comparable, as is expected from symmetry considerations and the fact that these compounds only differ in their A group element. In particular, we note differences in the energies of low temperature, shear-like modes. Furthermore, an improvement in the fit of cp at T > 500 K is obtained if N₂ = 5 compared with N₂ = 6. It suggests that, apart from the Si in Ti_3SiC_2 and Ge atoms in Ti_3GeC_2, at least one of the vibrational modes involving the C atoms is a low-temperature mode. Therefore, only five modes appear to participate in cp at higher temperatures.

Finally, the first principles calculations of the cp show excellent agreement with experiment, particularly in the low temperature region. Further investigation is underway.

Acknowledgments

The authors are thankful to the Polish State Committee of Scientific Research for financial support under Grant No. 4 TO8A 05324. This work was partially funded by the Division of Materials Research of the National Science Foundation (contract no. DMR 0072067).
References